{ "best_metric": 0.3286580741405487, "best_model_checkpoint": "experts/mistralic-expert-17/checkpoint-600", "epoch": 0.24870466321243523, "eval_steps": 200, "global_step": 600, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.4039, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.4071, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.3793, "step": 30 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.3936, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.3589, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.3789, "step": 60 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.3648, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.3755, "step": 80 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.3395, "step": 90 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.366, "step": 100 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.3333, "step": 110 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.3233, "step": 120 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.3602, "step": 130 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.3533, "step": 140 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.3759, "step": 150 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.3524, "step": 160 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.3734, "step": 170 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.3495, "step": 180 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.3227, "step": 190 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.3588, "step": 200 }, { "epoch": 0.08, "eval_loss": 0.3498784005641937, "eval_runtime": 158.451, "eval_samples_per_second": 6.311, "eval_steps_per_second": 3.156, "step": 200 }, { "epoch": 0.08, "mmlu_eval_accuracy": 0.5977172275916227, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.42857142857142855, "mmlu_eval_accuracy_astronomy": 0.8125, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.6206896551724138, "mmlu_eval_accuracy_college_biology": 0.625, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.6363636363636364, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.6666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.6875, "mmlu_eval_accuracy_elementary_mathematics": 0.4878048780487805, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.7307692307692307, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.5454545454545454, "mmlu_eval_accuracy_logical_fallacies": 0.6666666666666666, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.9090909090909091, "mmlu_eval_accuracy_marketing": 0.92, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.7441860465116279, "mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, "mmlu_eval_accuracy_moral_scenarios": 0.37, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.7352941176470589, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.6129032258064516, "mmlu_eval_accuracy_professional_law": 0.4117647058823529, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.5942028985507246, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.6666666666666666, "mmlu_eval_accuracy_sociology": 0.9545454545454546, "mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.8421052631578947, "mmlu_loss": 1.397062867918774, "step": 200 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.3607, "step": 210 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.3351, "step": 220 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.3459, "step": 230 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.3426, "step": 240 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.3387, "step": 250 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.3391, "step": 260 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.3518, "step": 270 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.3405, "step": 280 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.3259, "step": 290 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.3648, "step": 300 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.3459, "step": 310 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.3539, "step": 320 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.339, "step": 330 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.3132, "step": 340 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.334, "step": 350 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.3466, "step": 360 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.3353, "step": 370 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.3327, "step": 380 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.3083, "step": 390 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.3095, "step": 400 }, { "epoch": 0.17, "eval_loss": 0.33575424551963806, "eval_runtime": 158.1528, "eval_samples_per_second": 6.323, "eval_steps_per_second": 3.162, "step": 400 }, { "epoch": 0.17, "mmlu_eval_accuracy": 0.5990684549053618, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.6875, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.5862068965517241, "mmlu_eval_accuracy_college_biology": 0.625, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.5454545454545454, "mmlu_eval_accuracy_college_mathematics": 0.5454545454545454, "mmlu_eval_accuracy_college_medicine": 0.5909090909090909, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.6666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.6875, "mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.59375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.7777777777777778, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7619047619047619, "mmlu_eval_accuracy_high_school_macroeconomics": 0.5813953488372093, "mmlu_eval_accuracy_high_school_mathematics": 0.3448275862068966, "mmlu_eval_accuracy_high_school_microeconomics": 0.5769230769230769, "mmlu_eval_accuracy_high_school_physics": 0.058823529411764705, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.6923076923076923, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.6363636363636364, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.45454545454545453, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.92, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.7558139534883721, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.34, "mmlu_eval_accuracy_nutrition": 0.7272727272727273, "mmlu_eval_accuracy_philosophy": 0.7647058823529411, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.5806451612903226, "mmlu_eval_accuracy_professional_law": 0.4, "mmlu_eval_accuracy_professional_medicine": 0.6451612903225806, "mmlu_eval_accuracy_professional_psychology": 0.6086956521739131, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.6296296296296297, "mmlu_eval_accuracy_sociology": 0.9545454545454546, "mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.5875697279879069, "step": 400 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.3371, "step": 410 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.3148, "step": 420 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.3234, "step": 430 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.3495, "step": 440 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.302, "step": 450 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.337, "step": 460 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.3219, "step": 470 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.3364, "step": 480 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.2821, "step": 490 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.3121, "step": 500 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.3349, "step": 510 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.3251, "step": 520 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.3294, "step": 530 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.3251, "step": 540 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.3288, "step": 550 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.3255, "step": 560 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.3144, "step": 570 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.3193, "step": 580 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.3127, "step": 590 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.3119, "step": 600 }, { "epoch": 0.25, "eval_loss": 0.3286580741405487, "eval_runtime": 158.1596, "eval_samples_per_second": 6.323, "eval_steps_per_second": 3.161, "step": 600 }, { "epoch": 0.25, "mmlu_eval_accuracy": 0.6005865646844798, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.35714285714285715, "mmlu_eval_accuracy_astronomy": 0.8125, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.6551724137931034, "mmlu_eval_accuracy_college_biology": 0.5625, "mmlu_eval_accuracy_college_chemistry": 0.375, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.6363636363636364, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.7272727272727273, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.5833333333333334, "mmlu_eval_accuracy_electrical_engineering": 0.625, "mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415, "mmlu_eval_accuracy_formal_logic": 0.14285714285714285, "mmlu_eval_accuracy_global_facts": 0.3, "mmlu_eval_accuracy_high_school_biology": 0.6875, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.8333333333333334, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.7142857142857143, "mmlu_eval_accuracy_high_school_macroeconomics": 0.6046511627906976, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.6538461538461539, "mmlu_eval_accuracy_high_school_physics": 0.11764705882352941, "mmlu_eval_accuracy_high_school_psychology": 0.8666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.8181818181818182, "mmlu_eval_accuracy_high_school_world_history": 0.6538461538461539, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.9230769230769231, "mmlu_eval_accuracy_jurisprudence": 0.6363636363636364, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.9090909090909091, "mmlu_eval_accuracy_marketing": 0.92, "mmlu_eval_accuracy_medical_genetics": 0.9090909090909091, "mmlu_eval_accuracy_miscellaneous": 0.7441860465116279, "mmlu_eval_accuracy_moral_disputes": 0.5526315789473685, "mmlu_eval_accuracy_moral_scenarios": 0.35, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.7647058823529411, "mmlu_eval_accuracy_prehistory": 0.6, "mmlu_eval_accuracy_professional_accounting": 0.6129032258064516, "mmlu_eval_accuracy_professional_law": 0.38235294117647056, "mmlu_eval_accuracy_professional_medicine": 0.6774193548387096, "mmlu_eval_accuracy_professional_psychology": 0.5797101449275363, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.7037037037037037, "mmlu_eval_accuracy_sociology": 0.9545454545454546, "mmlu_eval_accuracy_us_foreign_policy": 0.9090909090909091, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7894736842105263, "mmlu_loss": 1.7061042173257384, "step": 600 } ], "logging_steps": 10, "max_steps": 7236, "num_train_epochs": 3, "save_steps": 200, "total_flos": 3.6867039328272384e+17, "trial_name": null, "trial_params": null }