update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: ko-finance_news_classifier
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ko-finance_news_classifier
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4474
|
19 |
+
- Accuracy: 0.8423
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 20
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
50 |
+
| No log | 1.0 | 243 | 1.0782 | 0.8010 |
|
51 |
+
| No log | 2.0 | 486 | 1.0328 | 0.8381 |
|
52 |
+
| 0.0766 | 3.0 | 729 | 1.2348 | 0.8330 |
|
53 |
+
| 0.0766 | 4.0 | 972 | 1.3915 | 0.8052 |
|
54 |
+
| 0.046 | 5.0 | 1215 | 1.2995 | 0.8474 |
|
55 |
+
| 0.046 | 6.0 | 1458 | 1.2926 | 0.8361 |
|
56 |
+
| 0.0512 | 7.0 | 1701 | 1.2889 | 0.8330 |
|
57 |
+
| 0.0512 | 8.0 | 1944 | 1.3107 | 0.8392 |
|
58 |
+
| 0.0415 | 9.0 | 2187 | 1.4514 | 0.8309 |
|
59 |
+
| 0.0415 | 10.0 | 2430 | 1.2869 | 0.8381 |
|
60 |
+
| 0.0279 | 11.0 | 2673 | 1.2874 | 0.8526 |
|
61 |
+
| 0.0279 | 12.0 | 2916 | 1.4731 | 0.8423 |
|
62 |
+
| 0.0126 | 13.0 | 3159 | 1.3956 | 0.8443 |
|
63 |
+
| 0.0126 | 14.0 | 3402 | 1.4211 | 0.8454 |
|
64 |
+
| 0.0101 | 15.0 | 3645 | 1.3686 | 0.8474 |
|
65 |
+
| 0.0101 | 16.0 | 3888 | 1.4412 | 0.8423 |
|
66 |
+
| 0.0114 | 17.0 | 4131 | 1.4376 | 0.8423 |
|
67 |
+
| 0.0114 | 18.0 | 4374 | 1.4566 | 0.8423 |
|
68 |
+
| 0.0055 | 19.0 | 4617 | 1.4439 | 0.8443 |
|
69 |
+
| 0.0055 | 20.0 | 4860 | 1.4474 | 0.8423 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.28.0
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Datasets 2.12.0
|
77 |
+
- Tokenizers 0.13.3
|