File size: 8,581 Bytes
2f6628d
 
fd48f4d
2f6628d
fd48f4d
2f6628d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
###########################################################################
# NLP demo software by HyperbeeAI.                                        #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
license_statement = "NLP demo software by HyperbeeAI. Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected]"
print("imported models.py")
print(license_statement)
print("")

import torch
import torch.nn as nn
import layers

class encoder_ai85cnn(nn.Module):
    def __init__(
            self,
            device,
            **kwargs
    ):
        super().__init__()
        self.cc0     = layers.ai85_conv1d(  64,      112,       1,           0, activation=None)
        self.cc1     = layers.ai85_conv1d( 112,      112,       3,           1, activation='relu')
        self.res1    = layers.ai85_add()
        self.cc2     = layers.ai85_conv1d( 112,      112,       3,           1, activation='relu')
        self.res2    = layers.ai85_add()
        self.cc3     = layers.ai85_conv1d( 112,      112,       3,           1, activation='relu')
        self.res3    = layers.ai85_add()
        self.cc4     = layers.ai85_conv1d( 112,      112,       3,           1, activation='relu')
        self.res4    = layers.ai85_add()
        self.cc5     = layers.ai85_conv1d( 112,      64 ,       1,           0, activation=None) 
        self.resg    = layers.ai85_add()
        self.device  = device

    def forward(self, x):
        r = self.cc0(x)
        t = self.cc1( r )
        r = self.res1(t, r)
        t = self.cc2( r )
        r = self.res2(t, r)
        t = self.cc3( r )
        r = self.res3(t, r)
        t = self.cc4( r )
        r = self.res4(t, r)
        t = self.cc5(r)
        y = self.resg(t, x)
        return y

class encoder(nn.Module):
    def __init__(
            self,
            device,
            **kwargs
    ):
        super().__init__()
        self.pre       = layers.lpre()
        self.cnn       = encoder_ai85cnn(device = device);
        self.device    = device

    def forward(self, x):
        ssb   = x.shape[0]
        sl    = x.shape[1]
        pre_d = self.pre(x, 0, sl, ssb)
        out   = self.cnn(pre_d)
        return out, pre_d

class decoder_ai85cnn_ccf(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op = layers.ai85_conv1d(   112,    64 ,       1,           0, activation=None, output_width_30b=True)

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_cpr(nn.Module):
    def __init__(self, **kwargs):
        super().__init__()
        self.layer1   = layers.ai85_conv1d( 64*2,  64,       1,           0,       activation='relu')
        self.layer2   = layers.ai85_conv1d( 64,    64,       1,           0,       activation='relu') 

    def forward(self, x):
        x = self.layer1(x)
        y = self.layer2(x)
        return y

class decoder_ai85cnn_cl1(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op    = layers.ai85_conv1d( 112,     112,       3,           0, activation='relu')

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_cma(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op = layers.ai85_conv1d(   64,     112,       1,           0, activation=None)
        self.res= layers.ai85_add()

    def forward(self, x, res):
        t = self.op(x)
        y = self.res(t, res)
        return y

class decoder_ai85cnn_claa(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op    = layers.ai85_conv1d( 112,     112,       3,           0, activation='relu')

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_cl0(nn.Module):
    def __init__(self, **kwargs):
        super().__init__()
        self.op = layers.ai85_conv1d(   64,     112,       1,           0, activation=None)

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_clfa(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op    = layers.ai85_conv1d( 112,     112,       3,           0, activation='relu')

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_ccac(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op    = layers.ai85_conv1d( 112,     112,       3,           0, activation='relu')

    def forward(self, x):
        y = self.op(x)
        return y

class decoder_ai85cnn_cib(nn.Module):
    def __init__(self,  **kwargs):
        super().__init__()
        self.op = layers.ai85_conv1d(   112,    64 ,       1,           0, activation=None)

    def forward(self, x):
        y = self.op(x)
        return y

class decoder(nn.Module):
    def __init__(
            self,
            device, 
            tpi, 
            **kwargs
    ):
        super().__init__()

        self.device       = device
        self.tpi          = tpi
        self.pre          = layers.lpre()
        self.fff          = nn.Linear(64, 16384)
        self.fff.weight   = self.pre.ee1.weight    # i.e., fff is not a layer, this is just an easy way of doing reverse embedding on pytorch
        self.cl0          = decoder_ai85cnn_cl0();
        self.ccf          = decoder_ai85cnn_ccf();
        self.cib          = decoder_ai85cnn_cib();
        self.cma          = decoder_ai85cnn_cma();
        self.cpr          = decoder_ai85cnn_cpr();
        self.cl1          = decoder_ai85cnn_cl1();
        self.claa         = decoder_ai85cnn_claa();
        self.clfa         = decoder_ai85cnn_clfa();
        self.ccac         = decoder_ai85cnn_ccac();

    def forward(self, x, ees , pss=0):
        ssb = x.shape[0]
        sst = x.shape[1]
        sl  = ees.shape[2]
        
        pre_d          = self.pre(x, pss, sst + pss, ssb)
        t              = self.cl0(pre_d)
        cl0_out        = t
        ssb, ts1, _    = t.shape
        tp             = torch.zeros(ssb, ts1, 2).fill_(self.tpi).to(t.device)
        t              = torch.cat((tp, t), dim = 2)
        xconv          = self.cl1(t)
        t              = self.cib(xconv)
        ssb, ss_p, sst = t.shape
        x2             = ees.unsqueeze(3).repeat(1, 1, 1, sst).view(ssb, ss_p, -1)
        t              = t.unsqueeze(2).repeat(1, 1, sl, 1).view(ssb, ss_p, -1)
        t              = torch.cat([t, x2], dim=1)
        t              = self.cpr(t)
        t              = t.view(ssb, ss_p, sl, sst)
        t              = torch.max(t, dim=2).values
        t              = self.cma(t, xconv)
        t              = torch.cat((tp, t), dim = 2)
        xconv          = self.claa(t)
        t              = self.cib(xconv)
        t              = t.unsqueeze(2).repeat(1, 1, sl, 1).view(ssb, ss_p, -1)
        t              = torch.cat([t, x2], dim=1)
        t              = self.cpr(t)
        t              = t.view(ssb, ss_p, sl, sst)
        t              = torch.max(t, dim=2).values
        t              = self.cma(t, xconv)
        t              = torch.cat((tp, t), dim = 2)
        xconv          = self.clfa(t)
        t              = self.cib(xconv)
        t              = t.unsqueeze(2).repeat(1, 1, sl, 1).view(ssb, ss_p, -1)
        t              = torch.cat([t, x2], dim=1)
        t              = self.cpr(t)
        t              = t.view(ssb, ss_p, sl, sst)
        t              = torch.max(t, dim=2).values
        t              = self.cma(t, xconv)
        t              = torch.cat((tp, t), dim = 2)
        xconv          = self.ccac(t)
        t              = self.cib(xconv)
        t              = t.unsqueeze(2).repeat(1, 1, sl, 1).view(ssb, ss_p, -1)
        t              = torch.cat([t, x2], dim=1)
        t              = self.cpr(t)
        t              = t.view(ssb, ss_p, sl, sst)
        t              = torch.max(t, dim=2).values
        t              = self.cma(t, xconv)
        pss            = t + sst
        ccf_out        = self.ccf(t)
        output         = self.fff(ccf_out.permute(0, 2, 1))

        return output, pre_d, ccf_out

class seq2seq(nn.Module):
    def __init__(self, encoder, decoder):
        super().__init__()
        
        self.encoder = encoder
        self.decoder = decoder
        
    def forward(self, src, trg):
        enc_out, _ = self.encoder(src)
        output, _, _  = self.decoder(trg, enc_out)
        return output