vukbatanovic commited on
Commit
473d856
·
verified ·
1 Parent(s): dec370d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - sr
5
+ metrics:
6
+ - accuracy
7
+ base_model:
8
+ - classla/bcms-bertic
9
+ library_name: transformers
10
+ ---
11
+
12
+ # BERTić-COMtext-SR-legal-lemma-ijekavica
13
+
14
+ **BERTić-COMtext-SR-legal-lemma-ijekavica** is a variant of the [BERTić](https://huggingface.co/classla/bcms-bertic) model, fine-tuned on the task of lemmatization tag prediction in Serbian legal texts written in the Ijekavian pronunciation.
15
+ The model was fine-tuned for 20 epochs on the Ijekavian variant of the [COMtext.SR.legal](https://github.com/ICEF-NLP/COMtext.SR) dataset.
16
+
17
+ # Benchmarking
18
+
19
+ This model was evaluated on the task of lemmatizing Serbian legal texts.
20
+ Lemmatization was performed using the predicted string edit tags, as described in this JTDH 2024 paper:
21
+ * [Lemmatizing Serbian and Croatian via String Edit Prediction](https://zenodo.org/records/13937204)
22
+
23
+ The model was compared to previous lemmatization approaches that relied on the [hrLex](http://hdl.handle.net/11356/1232) inflectional lexicon:
24
+ - The [CLASSLA](http://pypi.org/project/classla/) library
25
+ - A variant of [BERTić](https://huggingface.co/classla/bcms-bertic) fine-tuned for MSD prediction using the [SETimes.SR 2.0](http://hdl.handle.net/11356/1843) corpus of newswire texts
26
+ - A [variant](https://huggingface.co/ICEF-NLP/bcms-bertic-comtext-sr-legal-msd-ijekavica) of [BERTić](https://huggingface.co/classla/bcms-bertic) fine-tuned for MSD prediction using the [COMtext.SR.legal](https://github.com/ICEF-NLP/COMtext.SR) corpus of legal texts
27
+ - [SrBERTa](http://huggingface.co/nemanjaPetrovic/SrBERTa), a model specially trained on Serbian legal texts, fine-tuned for MSD prediction using the [COMtext.SR.legal](https://github.com/ICEF-NLP/COMtext.SR) corpus of legal texts
28
+
29
+ Accuracy was used as the evaluation metric and gold tokenized text was taken as input.
30
+ All of the previous large language models were fine-tuned for 15 epochs.
31
+ CLASSLA and BERTić-SETimes were directly tested on the entire COMtext.SR.legal.ijekavica corpus.
32
+ BERTić-COMtext-SR-legal-MSD-ijekavica, BERTić-COMtext-SR-legal-lemma-ijekavica, and SrBERTa were fine-tuned and evaluated on the COMtext.SR.legal.ijekavica corpus using 10-fold CV.
33
+
34
+ The code and data to run these experiments is available on the [COMtext.SR GitHub repository](https://github.com/ICEF-NLP/COMtext.SR).
35
+
36
+ ## Results
37
+
38
+ | Model | Lemma ACC |
39
+ | ------------------------------------------- | ---------- |
40
+ | CLASSLA-SR | 0.9036 |
41
+ | CLASSLA-HR | 0.9353 |
42
+ | BERTić-SETimes.SR | 0.9412 |
43
+ | BERTić-COMtext-SR-legal-MSD-ijekavica | 0.9429 |
44
+ | SrBERTa | 0.9187 |
45
+ | **BERTić-COMtext-SR-legal-lemma-ijekavica** | **0.9833** |