poeroz commited on
Commit
149bdaf
β€’
1 Parent(s): cacf3f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -1
README.md CHANGED
@@ -8,4 +8,123 @@ tags:
8
  - speech-language models
9
  - speech interaction
10
  - speech-to-speech
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - speech-language models
9
  - speech interaction
10
  - speech-to-speech
11
+ ---
12
+
13
+ # 🎧 LLaMA-Omni: Seamless Speech Interaction with Large Language Models
14
+
15
+ > **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Zhengrui Ma](https://scholar.google.com.hk/citations?user=dUgq6tEAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
16
+
17
+ [![arXiv](https://img.shields.io/badge/arXiv-xxxx.xxxxx-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/xxxx.xxxxx)
18
+ [![model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging_Face-Model-blue.svg)](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni)
19
+ [![code](https://img.shields.io/badge/Github-Code-keygen.svg?logo=github)](https://github.com/ictnlp/LLaMA-Omni)
20
+
21
+
22
+ LLaMA-Omni is a speech-language model built upon Llama-3.1-8B-Instruct. It supports low-latency and high-quality speech interactions, simultaneously generating both text and speech responses based on speech instructions.
23
+
24
+ ![](images/model.png)
25
+
26
+ ## πŸ’‘ Highlights
27
+
28
+ πŸ’ͺ **Built on Llama-3.1-8B-Instruct, ensuring high-quality responses.**
29
+
30
+ πŸš€ **Low-latency speech interaction with a latency as low as 226ms.**
31
+
32
+ 🎧 **Simultaneous generation of both text and speech responses.**
33
+
34
+ ♻️ **Trained in less than 3 days using just 4 GPUs.**
35
+
36
+ ## Install
37
+
38
+ 1. Clone this repository.
39
+
40
+ ```shell
41
+ git clone https://github.com/ictnlp/LLaMA-Omni
42
+ cd LLaMA-Omni
43
+ ```
44
+
45
+ 2. Install packages.
46
+
47
+ ```shell
48
+ conda create -n llama-omni python=3.10
49
+ conda activate llama-omni
50
+ pip install pip==24.0
51
+ pip install -e .
52
+ ```
53
+
54
+ 3. Install `fairseq`.
55
+
56
+ ```shell
57
+ git clone https://github.com/pytorch/fairseq
58
+ cd fairseq
59
+ pip install -e . --no-build-isolation
60
+ ```
61
+
62
+ 4. Install `flash-attention`.
63
+
64
+ ```shell
65
+ pip install flash-attn --no-build-isolation
66
+ ```
67
+
68
+ ## Quick Start
69
+
70
+ 1. Download the `Llama-3.1-8B-Omni` model from πŸ€—[Huggingface](https://huggingface.co/ICTNLP/Llama-3.1-8B-Omni).
71
+
72
+ 2. Download the `Whisper-large-v3` model.
73
+
74
+ ```shell
75
+ import whisper
76
+ model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
77
+ ```
78
+
79
+ 3. Download the unit-based HiFi-GAN vocoder.
80
+
81
+ ```shell
82
+ wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000 -P vocoder/
83
+ wget https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json -P vocoder/
84
+ ```
85
+
86
+ ## Gradio Demo
87
+
88
+ 1. Launch a controller.
89
+ ```shell
90
+ python -m omni_speech.serve.controller --host 0.0.0.0 --port 10000
91
+ ```
92
+
93
+ 2. Launch a gradio web server.
94
+ ```shell
95
+ python -m omni_speech.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --model-list-mode reload --vocoder vocoder/g_00500000 --vocoder-cfg vocoder/config.json
96
+ ```
97
+
98
+ 3. Launch a model worker.
99
+ ```shell
100
+ python -m omni_speech.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path Llama-3.1-8B-Omni --model-name Llama-3.1-8B-Omni --s2s
101
+ ```
102
+
103
+ 4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-3.1-8B-Omni!
104
+
105
+ ## Local Inference
106
+
107
+ To run inference locally, please organize the speech instruction files according to the format in the `omni_speech/infer/examples` directory, then refer to the following script.
108
+ ```shell
109
+ bash omni_speech/infer/run.sh omni_speech/infer/examples
110
+ ```
111
+
112
+ ## Acknowledgements
113
+
114
+ - [LLaVA](https://github.com/haotian-liu/LLaVA): The codebase we built upon.
115
+ - [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor.
116
+
117
+ ## Citation
118
+
119
+ If you have any questions, please feel free to submit an issue or contact `[email protected]`.
120
+
121
+ If our work is useful for you, please cite as:
122
+
123
+ ```
124
+ @article{fang-etal-2024-llama-omni,
125
+ title={LLaMA-Omni: Seamless Speech Interaction with Large Language Models},
126
+ author={Fang, Qingkai and Guo, Shoutao and Zhou, Yan and Ma, Zhengrui and Zhang, Shaolei and Feng, Yang},
127
+ journal={arXiv preprint arXiv:xxxx.xxxxx},
128
+ year={2024}
129
+ }
130
+ ```