File size: 11,900 Bytes
52b6907 f8b5be2 52b6907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from typing import Optional, Tuple, Union, List
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.utils import (
logging,
)
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.blip_2.modeling_blip_2 import Blip2ForConditionalGenerationModelOutput
from transformers import (
Blip2PreTrainedModel,
Blip2VisionModel,
Blip2QFormerModel,
PreTrainedTokenizer,
PreTrainedModel,
)
logger = logging.get_logger(__name__)
class ZiyaBlip2ForCausalLM(Blip2PreTrainedModel):
config_class = Blip2Config
main_input_name = "pixel_values"
_keys_to_ignore_on_load_missing = [
r"language_model",
]
def __init__(self, config: Blip2Config, language_model: PreTrainedModel = None):
super().__init__(config)
self.vision_model = Blip2VisionModel(config.vision_config)
self.query_tokens = nn.Parameter(torch.zeros(
1, config.num_query_tokens, config.qformer_config.hidden_size))
self.qformer = Blip2QFormerModel(config.qformer_config)
self.language_projection = nn.Linear(
config.qformer_config.hidden_size, config.text_config.hidden_size)
self.language_model = language_model
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.language_model.get_output_embeddings()
def get_encoder(self):
return self.language_model.get_encoder()
def get_decoder(self):
return self.language_model.get_decoder()
def _tie_weights(self):
if not self.config.use_decoder_only_language_model:
self.language_model.encoder.embed_tokens = self.language_model.shared
self.language_model.decoder.embed_tokens = self.language_model.shared
def _preprocess_accelerate(self):
r"""
Some pre-processing hacks to make the model `accelerate` compatible. Check
https://github.com/huggingface/transformers/pull/21707 for more details.
"""
hf_device_map = self.hf_device_map
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
# warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
logger.warning(
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
" Please pass a `device_map` that contains `language_model` to remove this warning."
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for",
" more details on creating a `device_map` for large models.",
)
if hasattr(self.language_model, "_hf_hook"):
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids_before_image: torch.FloatTensor,
input_ids_after_image: torch.FloatTensor,
labels_after_image: torch.FloatTensor,
# 因为label不会出现在image之前,所以这里不需要labels_before_image, 按照input_ids_before_image补-100就可以了
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# step 1: forward the images through the vision encoder,
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[0]
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
image_attention_mask = torch.ones(
image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
query_output = query_outputs[0]
# step 2.5 generate the lm input by prompt and output
language_model_inputs = self.language_projection(query_output)
language_model_attention_mask = torch.ones(
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
)
# 确保language_model_inputs的batch
assert language_model_inputs.shape[0] == input_ids_after_image.shape[0]
inputs_embeds_before_image = self.language_model.get_input_embeddings()(input_ids_before_image)
inputs_embeds_after_image = self.language_model.get_input_embeddings()(input_ids_after_image)
inputs_embeds = torch.cat(
[
inputs_embeds_before_image.to(language_model_inputs.device),
language_model_inputs,
inputs_embeds_after_image.to(language_model_inputs.device)
], dim=1)
attention_mask_before = torch.ones_like(input_ids_before_image)
attention_mask_after = torch.ones_like(input_ids_after_image)
attention_mask = torch.cat(
[
attention_mask_before.to(language_model_attention_mask.device),
language_model_attention_mask,
attention_mask_after.to(language_model_attention_mask.device)
], dim=1
)
# labels也需要对应的处理,把前面空缺的-100加进去
labels = torch.cat(
[
torch.tensor(
[-100]).expand_as(input_ids_before_image).to(language_model_inputs.device),
torch.tensor([-100]).expand(query_tokens.shape[:-1]
).to(language_model_inputs.device),
labels_after_image,
], dim=1
)
# step 3: use the language model
if self.config.use_decoder_only_language_model:
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
else:
raise Exception("not impl")
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
return ((loss,) + output) if loss is not None else output
return Blip2ForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
vision_outputs=vision_outputs,
qformer_outputs=query_outputs,
language_model_outputs=outputs,
)
def prepare_inputs_for_chat(
self,
tokenizer: PreTrainedTokenizer,
query: str,
pixel_values: torch.Tensor,
previous_querys: List[str],
previous_outputs: List[str],
max_length: int,
):
# 1. process input_ids
assert len(previous_querys) == len(previous_outputs)
device = self.device
prefix = self.config.prompt_prefix
human_name = self.config.human_name
assistant_name = self.config.assistant_name
input_ids_before_image = tokenizer(
prefix, return_tensors="pt").input_ids.to(device)
inputs_ids_after_image = []
for (p, o) in zip(previous_querys, previous_outputs):
# {pormpt}\n[答]: {output}\n[问]:
inputs_ids_after_image += tokenizer(f"{human_name}: {p}\n", add_special_tokens=False).input_ids + \
tokenizer(f"{assistant_name}: {o}\n", add_special_tokens=False).input_ids
inputs_ids_after_image += tokenizer(f"{human_name}: {query}\n",
add_special_tokens=False).input_ids + tokenizer(f"{assistant_name} :",
add_special_tokens=False).input_ids
inputs_ids_after_image = torch.IntTensor([inputs_ids_after_image]).to(device)
# 2. Prepare embeddings
pixel_values.to(device)
image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
image_attention_mask = torch.ones(
image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=True,
)
query_output = query_outputs.last_hidden_state
language_model_inputs = self.language_projection(query_output)
# concatenate query embeddings with prompt embeddings
prefix_inputs_embeds = self.get_input_embeddings()(input_ids_before_image)
prompt_inputs_embeds = self.get_input_embeddings()(inputs_ids_after_image)
inputs_embeds = torch.cat([
prefix_inputs_embeds.to(language_model_inputs.device),
language_model_inputs,
prompt_inputs_embeds.to(language_model_inputs.device)], dim=1)
if inputs_embeds.shape[1] > max_length:
inputs_embeds = inputs_embeds[:, -max_length:, :]
input_ids = torch.concat([
input_ids_before_image,
torch.tensor([tokenizer.eos_token_id]).expand(
query_tokens.shape[:-1]).to(language_model_inputs.device),
inputs_ids_after_image,
], dim=1)
return input_ids, inputs_embeds
def chat(self,
tokenizer,
query: str,
pixel_values: torch.Tensor,
previous_querys: List[str],
previous_outputs: List[str],
**generate_kwargs,):
"""
use for generate text by chat-style
Args:
tokenizer (PretrainedTokenizer): llama tokenizer
query (str): current input query
pixel_values (torch.Tensor): image after image_processor
prompts (List[str]): chat history
outputs (List[str]): chat history
Returns:
text: generate text
"""
input_ids, inputs_embeds = self.prepare_inputs_for_chat(
tokenizer, query, pixel_values, previous_querys, previous_outputs, 2048
)
response = self.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=torch.ones_like(input_ids),
**generate_kwargs,
)
response = tokenizer.decode(response[0], skip_special_tokens=True)
return response
|