IEIT-Yuan commited on
Commit
3518833
·
verified ·
1 Parent(s): d80a18a

Upload 2 files

Browse files
Files changed (2) hide show
  1. yuan_hf_model.py +63 -14
  2. yuan_hf_model_cpu.py +1189 -0
yuan_hf_model.py CHANGED
@@ -25,15 +25,14 @@ import torch
25
  import torch.utils.checkpoint
26
  from torch import nn
27
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
- from transformers.models.llama.modeling_llama import LlamaRMSNorm,LlamaRotaryEmbedding
29
  from transformers.activations import ACT2FN
30
  from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
  from transformers.modeling_utils import PreTrainedModel
32
  from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
  from .configuration_yuan import YuanConfig
34
  from einops import rearrange
35
- from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
36
- from flash_attn import flash_attn_func
37
 
38
  import copy
39
 
@@ -58,9 +57,7 @@ class LocalizedFiltering(torch.nn.Module):
58
 
59
  self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
60
  self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
61
-
62
- #Use the same RMSNorm as llama
63
- self.output_layernorm = LlamaRMSNorm(self.embed_dim)
64
 
65
  def _train_forward(self, inputs):
66
  inputs = inputs.transpose(0,1)
@@ -197,7 +194,61 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
197
  k_embed = (k * cos) + (rotate_half(k) * sin)
198
  return q_embed, k_embed
199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
202
  class YuanMLP(nn.Module):
203
  def __init__(
@@ -240,8 +291,7 @@ class YuanAttention(nn.Module):
240
  )
241
  self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
242
  self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
243
- #Use the same RoataryEmbedding as llama
244
- self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
245
  if self.use_shareqk:
246
  self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
247
  self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
@@ -268,7 +318,8 @@ class YuanAttention(nn.Module):
268
  is_first_step = False
269
  if use_cache:
270
  if past_key_value is None:
271
- inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype ,device=torch.cuda.current_device())
 
272
  is_first_step = True
273
  else:
274
  before_hidden_states = past_key_value[2]
@@ -392,9 +443,8 @@ class YuanDecoderLayer(nn.Module):
392
  intermediate_size=config.intermediate_size,
393
  hidden_act=config.hidden_act,
394
  )
395
- #Use the same RMSNorm as llama
396
- self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
397
- self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
398
 
399
  def forward(
400
  self,
@@ -582,8 +632,7 @@ class YuanModel(YuanPreTrainedModel):
582
  self.reset_position_ids = config.reset_position_ids
583
  self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
584
  self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)])
585
- #Use the same RMSNorm as llama
586
- self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
587
  self.gradient_checkpointing = False
588
  # Initialize weights and apply final processing
589
  self.post_init()
 
25
  import torch.utils.checkpoint
26
  from torch import nn
27
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
 
28
  from transformers.activations import ACT2FN
29
  from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
30
  from transformers.modeling_utils import PreTrainedModel
31
  from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
32
  from .configuration_yuan import YuanConfig
33
  from einops import rearrange
34
+ #from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
35
+ #from flash_attn import flash_attn_func
36
 
37
  import copy
38
 
 
57
 
58
  self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
59
  self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
60
+ self.output_layernorm = YuanRMSNorm(self.embed_dim)
 
 
61
 
62
  def _train_forward(self, inputs):
63
  inputs = inputs.transpose(0,1)
 
194
  k_embed = (k * cos) + (rotate_half(k) * sin)
195
  return q_embed, k_embed
196
 
197
+ class YuanRMSNorm(nn.Module):
198
+ def __init__(self, hidden_size, eps=1e-6):
199
+ """
200
+ YuanRMSNorm is equivalent to LlamaRMSNorm
201
+ """
202
+ super().__init__()
203
+ self.weight = nn.Parameter(torch.ones(hidden_size))
204
+ self.variance_epsilon = eps
205
+
206
+ def forward(self, hidden_states):
207
+ input_dtype = hidden_states.dtype
208
+ hidden_states = hidden_states.to(torch.float32)
209
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
210
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
211
+ return self.weight * hidden_states.to(input_dtype)
212
+
213
+ class YuanRotaryEmbedding(torch.nn.Module):
214
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
215
+
216
+ """
217
+ YuanRotaryEmbedding is equivalent to LlamaRotaryEmbedding in transformers v4.36
218
+ """
219
+
220
+ super().__init__()
221
+
222
+ self.dim = dim
223
+ self.max_position_embeddings = max_position_embeddings
224
+ self.base = base
225
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
226
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
227
+
228
+ # Build here to make `torch.jit.trace` work.
229
+ self._set_cos_sin_cache(
230
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
231
+ )
232
 
233
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
234
+ self.max_seq_len_cached = seq_len
235
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
236
+
237
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
238
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
239
+ emb = torch.cat((freqs, freqs), dim=-1)
240
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
241
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
242
+
243
+ def forward(self, x, seq_len=None):
244
+ # x: [bs, num_attention_heads, seq_len, head_size]
245
+ if seq_len > self.max_seq_len_cached:
246
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
247
+
248
+ return (
249
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
250
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
251
+ )
252
 
253
  class YuanMLP(nn.Module):
254
  def __init__(
 
291
  )
292
  self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
293
  self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
294
+ self.rotary_emb = YuanRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
 
295
  if self.use_shareqk:
296
  self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
297
  self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
 
318
  is_first_step = False
319
  if use_cache:
320
  if past_key_value is None:
321
+ #inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype ,device=torch.cuda.current_device())
322
+ inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype)
323
  is_first_step = True
324
  else:
325
  before_hidden_states = past_key_value[2]
 
443
  intermediate_size=config.intermediate_size,
444
  hidden_act=config.hidden_act,
445
  )
446
+ self.input_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
447
+ self.post_attention_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 
448
 
449
  def forward(
450
  self,
 
632
  self.reset_position_ids = config.reset_position_ids
633
  self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
634
  self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)])
635
+ self.norm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 
636
  self.gradient_checkpointing = False
637
  # Initialize weights and apply final processing
638
  self.post_init()
yuan_hf_model_cpu.py ADDED
@@ -0,0 +1,1189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Yuan model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+ import torch.nn.functional as F
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
32
+ from .configuration_yuan import YuanConfig
33
+ from einops import rearrange
34
+ #from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
35
+ #from flash_attn import flash_attn_func
36
+
37
+ import copy
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CONFIG_FOR_DOC = "YuanConfig"
42
+
43
+
44
+ class LocalizedFiltering(torch.nn.Module):
45
+ """
46
+ Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
47
+ variable names and moving away from the stateful representation of incremental decoding state. See
48
+ "https://arxiv.org/abs/2209.10655" for more details.
49
+ """
50
+
51
+ def __init__(self, hidden_size):
52
+ super().__init__()
53
+
54
+ self.embed_dim = hidden_size
55
+ self.lf_conv2d_group = 1
56
+ self.lf_conv2d_num_pad = 1
57
+
58
+ self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
59
+ self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
60
+ self.output_layernorm = YuanRMSNorm(self.embed_dim)
61
+
62
+ def _train_forward(self, inputs):
63
+ inputs = inputs.transpose(0,1)
64
+ seq_len, bsz, embed_dim = inputs.size()
65
+ if embed_dim != self.embed_dim:
66
+ raise ValueError(
67
+ f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
68
+ )
69
+ residual = inputs
70
+
71
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
72
+ output1 = self.conv1(inputs)
73
+ output1 = output1[:, :, :seq_len, :]
74
+
75
+ output2 = self.conv2(output1)
76
+ output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
77
+ output2 = output2.view(seq_len, bsz, embed_dim)
78
+ assert output2.shape == residual.shape
79
+
80
+ lf_output = self.output_layernorm(output2 + residual)
81
+ lf_output = lf_output.transpose(0,1)
82
+ return lf_output
83
+
84
+ def _inference_forward(self, inputs, before_hidden_states):
85
+
86
+ if before_hidden_states is None:
87
+ inputs = inputs.transpose(0,1)
88
+ seq_len, bsz, embed_dim = inputs.size()
89
+ if embed_dim != self.embed_dim:
90
+ raise ValueError(
91
+ f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
92
+ )
93
+ residual = inputs
94
+
95
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
96
+ output1 = self.conv1(inputs)
97
+ output1 = output1[:, :, :seq_len, :]
98
+
99
+ output2 = self.conv2(output1)
100
+ output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
101
+ output2 = output2.view(seq_len, bsz, embed_dim)
102
+ assert output2.shape == residual.shape
103
+
104
+ lf_output = self.output_layernorm(output2 + residual)
105
+ lf_output = lf_output.transpose(0,1)
106
+ return lf_output
107
+ else:
108
+ inputs = inputs.transpose(0,1)
109
+ before_hidden_states = before_hidden_states.transpose(0,1)
110
+ residual = inputs
111
+
112
+ seq_len, bsz, embed_dim = inputs.size()
113
+ seq_len_before, _, _ = before_hidden_states.size()
114
+
115
+ assert seq_len == 1 and seq_len_before == 2
116
+
117
+ inputs = torch.cat((before_hidden_states, inputs), dim=0)
118
+ inputs = inputs.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1)
119
+
120
+ output1 = self.conv1(inputs)
121
+ output2 = self.conv2(output1[:,:,1:-1,:])
122
+ output2 = output2[:,:,1:-1,:]
123
+ output2 = output2.view(1, bsz, embed_dim)
124
+ assert output2.shape == residual.shape
125
+
126
+ lf_output = self.output_layernorm(output2 + residual)
127
+ lf_output = lf_output.transpose(0,1)
128
+
129
+ return lf_output
130
+
131
+
132
+
133
+ def forward(
134
+ self,
135
+ inputs,
136
+ before_hidden_states
137
+ ) -> torch.Tensor:
138
+ assert self.lf_conv2d_num_pad == 1
139
+ if self.training:
140
+ lf_output = self._train_forward(inputs)
141
+ else:
142
+ lf_output = self._inference_forward(inputs, before_hidden_states)
143
+
144
+ return lf_output
145
+
146
+
147
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
148
+ def _make_causal_mask(
149
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
150
+ ):
151
+ """
152
+ Make causal mask used for bi-directional self-attention.
153
+ """
154
+ bsz, tgt_len = input_ids_shape
155
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
156
+ mask_cond = torch.arange(mask.size(-1), device=device)
157
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
158
+ mask = mask.to(dtype)
159
+
160
+ if past_key_values_length > 0:
161
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
162
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
163
+
164
+
165
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
166
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
167
+ """
168
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
169
+ """
170
+ bsz, src_len = mask.size()
171
+ tgt_len = tgt_len if tgt_len is not None else src_len
172
+
173
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
174
+
175
+ inverted_mask = 1.0 - expanded_mask
176
+
177
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
178
+
179
+
180
+ def rotate_half(x):
181
+ """Rotates half the hidden dims of the input."""
182
+ x1 = x[..., : x.shape[-1] // 2]
183
+ x2 = x[..., x.shape[-1] // 2 :]
184
+ return torch.cat((-x2, x1), dim=-1)
185
+
186
+
187
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
188
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
189
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
190
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
191
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
192
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
193
+ q_embed = (q * cos) + (rotate_half(q) * sin)
194
+ k_embed = (k * cos) + (rotate_half(k) * sin)
195
+ return q_embed, k_embed
196
+
197
+ class YuanRMSNorm(nn.Module):
198
+ def __init__(self, hidden_size, eps=1e-6):
199
+ """
200
+ YuanRMSNorm is equivalent to LlamaRMSNorm
201
+ """
202
+ super().__init__()
203
+ self.weight = nn.Parameter(torch.ones(hidden_size))
204
+ self.variance_epsilon = eps
205
+
206
+ def forward(self, hidden_states):
207
+ input_dtype = hidden_states.dtype
208
+ hidden_states = hidden_states.to(torch.float32)
209
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
210
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
211
+ return self.weight * hidden_states.to(input_dtype)
212
+
213
+ class YuanRotaryEmbedding(torch.nn.Module):
214
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
215
+
216
+ """
217
+ YuanRotaryEmbedding is equivalent to LlamaRotaryEmbedding in transformers v4.36
218
+ """
219
+
220
+ super().__init__()
221
+
222
+ self.dim = dim
223
+ self.max_position_embeddings = max_position_embeddings
224
+ self.base = base
225
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
226
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
227
+
228
+ # Build here to make `torch.jit.trace` work.
229
+ self._set_cos_sin_cache(
230
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
231
+ )
232
+
233
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
234
+ self.max_seq_len_cached = seq_len
235
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
236
+
237
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
238
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
239
+ emb = torch.cat((freqs, freqs), dim=-1)
240
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
241
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
242
+
243
+ def forward(self, x, seq_len=None):
244
+ # x: [bs, num_attention_heads, seq_len, head_size]
245
+ if seq_len > self.max_seq_len_cached:
246
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
247
+
248
+ return (
249
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
250
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
251
+ )
252
+
253
+ class YuanMLP(nn.Module):
254
+ def __init__(
255
+ self,
256
+ hidden_size: int,
257
+ intermediate_size: int,
258
+ hidden_act: str,
259
+ ):
260
+ super().__init__()
261
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
262
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
263
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
264
+ self.act_fn = ACT2FN[hidden_act]
265
+
266
+ def forward(self, x):
267
+ return self.down_proj(self.gate_proj(x) * self.act_fn(self.up_proj(x)))
268
+
269
+ class YuanAttention(nn.Module):
270
+ """Localized Filtering-based Attention 'YUAN 2.0: A Large Language Model with Localized Filtering-based Attention' paper"""
271
+
272
+ def __init__(self, config: YuanConfig):
273
+ super().__init__()
274
+ self.config = config
275
+ self.hidden_size = config.hidden_size
276
+ self.num_heads = config.num_attention_heads
277
+ self.head_dim = self.hidden_size // self.num_heads
278
+ self.max_position_embeddings = config.max_position_embeddings
279
+ self.causal_mask = config.causal_mask
280
+ self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
281
+ self.use_flash_attention = config.use_flash_attention
282
+ try:
283
+ self.use_shareqk = config.use_shareqk
284
+ except Exception as e:
285
+ self.use_shareqk=False
286
+ self.dropout = 0.0
287
+ if (self.head_dim * self.num_heads) != self.hidden_size:
288
+ raise ValueError(
289
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
290
+ f" and `num_heads`: {self.num_heads})."
291
+ )
292
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
293
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
294
+ self.rotary_emb = YuanRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
295
+ if self.use_shareqk:
296
+ self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
297
+ self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
298
+ self.qk_bias = nn.Parameter(torch.Tensor(2, self.hidden_size))
299
+ else:
300
+ self.lf_gate = LocalizedFiltering(self.hidden_size)
301
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
302
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
303
+
304
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
305
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
306
+
307
+ def forward(
308
+ self,
309
+ hidden_states: torch.Tensor,
310
+ attention_mask: Optional[torch.Tensor] = None,
311
+ position_ids: Optional[torch.LongTensor] = None,
312
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
313
+ output_attentions: bool = False,
314
+ use_cache: bool = False,
315
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
316
+ bsz, q_len, _ = hidden_states.size()
317
+ before_hidden_states = None
318
+ is_first_step = False
319
+ if use_cache:
320
+ if past_key_value is None:
321
+ #inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype ,device=torch.cuda.current_device())
322
+ inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype)
323
+ is_first_step = True
324
+ else:
325
+ before_hidden_states = past_key_value[2]
326
+
327
+ if use_cache:
328
+ if is_first_step:
329
+ if q_len >= 2:
330
+ inference_hidden_states_memory = hidden_states[ :, -2:, :]
331
+ else:
332
+ inference_hidden_states_memory[:, :, :] = 0
333
+ inference_hidden_states_memory[:, -1:, :] = hidden_states[:, -1:, :]
334
+ else:
335
+ hidden_states_tmp = before_hidden_states[:, -1:, :]
336
+ inference_hidden_states_memory = copy.deepcopy(torch.cat((hidden_states_tmp, hidden_states), dim=1))
337
+
338
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
339
+ if self.use_shareqk:
340
+ qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
341
+ query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
342
+ query_states, key_states = torch.unbind(query_key, dim=2)
343
+
344
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
345
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
346
+ else:
347
+ hidden_states = self.lf_gate(hidden_states,before_hidden_states)
348
+ query_states = self.q_proj(hidden_states)
349
+ key_states = self.k_proj(hidden_states)
350
+ qk_states = torch.cat([query_states, key_states], dim=-1)
351
+ qk_states = qk_states.view(bsz,q_len,self.num_heads,int(qk_states.shape[-1]//self.num_heads))
352
+ (query_states,key_states) = torch.chunk(qk_states, 2, dim=-1)
353
+ query_states = query_states.transpose(1, 2)
354
+ key_states = key_states.transpose(1, 2)
355
+
356
+
357
+ kv_seq_len = key_states.shape[-2]
358
+ if past_key_value is not None:
359
+ kv_seq_len += past_key_value[0].shape[-2]
360
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
361
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
362
+
363
+ if past_key_value is not None:
364
+ # reuse k, v, self_attention
365
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
366
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
367
+
368
+ past_key_value = (key_states, value_states,inference_hidden_states_memory) if use_cache else None
369
+
370
+ if self.use_flash_attention:
371
+ attn_weights = None
372
+ query_states = query_states.transpose(1, 2)
373
+ key_states = key_states.transpose(1, 2)
374
+ value_states = value_states.transpose(1, 2)
375
+
376
+ batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
377
+ seqlen_k = key_states.shape[1]
378
+
379
+ q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
380
+
381
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int,
382
+ device=q.device)
383
+
384
+ if self.training:
385
+ assert seqlen_k == seqlen_q
386
+ cu_seqlens_k = cu_seqlens_q
387
+ is_causal = self.causal_mask
388
+ else:
389
+ is_causal = seqlen_q == seqlen_k
390
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int,
391
+ device=q.device)
392
+ self.dropout=0
393
+
394
+ output = flash_attn_unpadded_func(
395
+ q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
396
+ )
397
+
398
+ attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
399
+ else:
400
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
401
+
402
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
405
+ f" {attn_weights.size()}"
406
+ )
407
+ if attention_mask is not None:
408
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
409
+ raise ValueError(
410
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
411
+ )
412
+ attn_weights = attn_weights + attention_mask
413
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
414
+
415
+ # upcast attention to fp32
416
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
417
+ attn_output = torch.matmul(attn_weights, value_states)
418
+
419
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
420
+ raise ValueError(
421
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
422
+ f" {attn_output.size()}"
423
+ )
424
+
425
+ attn_output = attn_output.transpose(1, 2)
426
+
427
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
428
+
429
+ attn_output = self.o_proj(attn_output)
430
+
431
+ if not output_attentions:
432
+ attn_weights = None
433
+ return attn_output, attn_weights, past_key_value
434
+
435
+
436
+ class YuanDecoderLayer(nn.Module):
437
+ def __init__(self, config: YuanConfig):
438
+ super().__init__()
439
+ self.hidden_size = config.hidden_size
440
+ self.self_attn = YuanAttention(config=config)
441
+ self.mlp = YuanMLP(
442
+ hidden_size=self.hidden_size,
443
+ intermediate_size=config.intermediate_size,
444
+ hidden_act=config.hidden_act,
445
+ )
446
+ self.input_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
447
+ self.post_attention_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
448
+
449
+ def forward(
450
+ self,
451
+ hidden_states: torch.Tensor,
452
+ attention_mask: Optional[torch.Tensor] = None,
453
+ position_ids: Optional[torch.LongTensor] = None,
454
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
455
+ output_attentions: Optional[bool] = False,
456
+ use_cache: Optional[bool] = False,
457
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
458
+ """
459
+ Args:
460
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
461
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
462
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
463
+ output_attentions (`bool`, *optional*):
464
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
465
+ returned tensors for more detail.
466
+ use_cache (`bool`, *optional*):
467
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
468
+ (see `past_key_values`).
469
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
470
+ """
471
+
472
+ residual = hidden_states
473
+ hidden_states = self.input_layernorm(hidden_states)
474
+
475
+ # Self Attention
476
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
477
+ hidden_states=hidden_states,
478
+ attention_mask=attention_mask,
479
+ position_ids=position_ids,
480
+ past_key_value=past_key_value,
481
+ output_attentions=output_attentions,
482
+ use_cache=use_cache,
483
+ )
484
+ hidden_states = residual + hidden_states
485
+
486
+ # Fully Connected
487
+ residual = hidden_states
488
+ hidden_states = self.post_attention_layernorm(hidden_states)
489
+ hidden_states = self.mlp(hidden_states)
490
+ hidden_states = residual + hidden_states
491
+
492
+ outputs = (hidden_states,)
493
+
494
+ if output_attentions:
495
+ outputs += (self_attn_weights,)
496
+
497
+ if use_cache:
498
+ outputs += (present_key_value,)
499
+
500
+ return outputs
501
+
502
+
503
+ YUAN_START_DOCSTRING = r"""
504
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
505
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
506
+ etc.)
507
+
508
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
509
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
510
+ and behavior.
511
+
512
+ Parameters:
513
+ config ([`YuanConfig`]):
514
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
515
+ load the weights associated with the model, only the configuration. Check out the
516
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
517
+ """
518
+
519
+
520
+ @add_start_docstrings(
521
+ "The bare Yuan Model outputting raw hidden-states without any specific head on top.",
522
+ YUAN_START_DOCSTRING,
523
+ )
524
+ class YuanPreTrainedModel(PreTrainedModel):
525
+ config_class = YuanConfig
526
+ base_model_prefix = "model"
527
+ supports_gradient_checkpointing = True
528
+ _no_split_modules = ["YuanDecoderLayer"]
529
+ _skip_keys_device_placement = "past_key_values"
530
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
531
+
532
+ def _init_weights(self, module):
533
+ std = self.config.initializer_range
534
+ if isinstance(module, nn.Linear):
535
+ module.weight.data.normal_(mean=0.0, std=std)
536
+ if module.bias is not None:
537
+ module.bias.data.zero_()
538
+ elif isinstance(module, nn.Embedding):
539
+ module.weight.data.normal_(mean=0.0, std=std)
540
+ if module.padding_idx is not None:
541
+ module.weight.data[module.padding_idx].zero_()
542
+
543
+ def _set_gradient_checkpointing(self, module, value=False):
544
+ if isinstance(module, YuanModel):
545
+ module.gradient_checkpointing = value
546
+
547
+
548
+ YUAN_INPUTS_DOCSTRING = r"""
549
+ Args:
550
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
551
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
552
+ it.
553
+
554
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
555
+ [`PreTrainedTokenizer.__call__`] for details.
556
+
557
+ [What are input IDs?](../glossary#input-ids)
558
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
559
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
560
+
561
+ - 1 for tokens that are **not masked**,
562
+ - 0 for tokens that are **masked**.
563
+
564
+ [What are attention masks?](../glossary#attention-mask)
565
+
566
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
567
+ [`PreTrainedTokenizer.__call__`] for details.
568
+
569
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
570
+ `past_key_values`).
571
+
572
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
573
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
574
+ information on the default strategy.
575
+
576
+ - 1 indicates the head is **not masked**,
577
+ - 0 indicates the head is **masked**.
578
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
579
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
580
+ config.n_positions - 1]`.
581
+
582
+ [What are position IDs?](../glossary#position-ids)
583
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
584
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
585
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
586
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
587
+
588
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
589
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
590
+
591
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
592
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
593
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
594
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
595
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
596
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
597
+ model's internal embedding lookup matrix.
598
+ use_cache (`bool`, *optional*):
599
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
600
+ `past_key_values`).
601
+ output_attentions (`bool`, *optional*):
602
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
603
+ tensors for more detail.
604
+ output_hidden_states (`bool`, *optional*):
605
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
606
+ more detail.
607
+ return_dict (`bool`, *optional*):
608
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
609
+ """
610
+
611
+
612
+ @add_start_docstrings(
613
+ "The bare Yuan Model outputting raw hidden-states without any specific head on top.",
614
+ YUAN_START_DOCSTRING,
615
+ )
616
+ class YuanModel(YuanPreTrainedModel):
617
+ """
618
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuanDecoderLayer`]
619
+
620
+ Args:
621
+ config: YuanConfig
622
+ """
623
+
624
+ def __init__(self, config: YuanConfig):
625
+ super().__init__(config)
626
+ self.padding_idx = config.pad_token_id
627
+ self.vocab_size = config.vocab_size
628
+
629
+ #TODO: control it by config
630
+ self.eod_token = config.eod_token
631
+ self.reset_attention_mask = config.reset_attention_mask
632
+ self.reset_position_ids = config.reset_position_ids
633
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
634
+ self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)])
635
+ self.norm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
636
+ self.gradient_checkpointing = False
637
+ # Initialize weights and apply final processing
638
+ self.post_init()
639
+
640
+ def get_input_embeddings(self):
641
+ return self.embed_tokens
642
+
643
+ def set_input_embeddings(self, value):
644
+ self.embed_tokens = value
645
+
646
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
647
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
648
+ # create causal mask
649
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
650
+ combined_attention_mask = None
651
+ if input_shape[-1] > 1:
652
+ combined_attention_mask = _make_causal_mask(
653
+ input_shape,
654
+ inputs_embeds.dtype,
655
+ device=inputs_embeds.device,
656
+ past_key_values_length=past_key_values_length,
657
+ )
658
+
659
+ if attention_mask is not None:
660
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
661
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
662
+ inputs_embeds.device
663
+ )
664
+ combined_attention_mask = (
665
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
666
+ )
667
+
668
+ return combined_attention_mask
669
+
670
+ def _prepare_decoder_attention_mask_training(self, input_id, inputs_embeds, eod_token, reset_mask_flag ,reset_attention_mask=True, reset_position_ids=True):
671
+
672
+ micro_batch_size, seq_length = input_id.size()
673
+
674
+ attention_mask = torch.tril(torch.ones(
675
+ (micro_batch_size, seq_length, seq_length), device=inputs_embeds.device)).view(
676
+ micro_batch_size, 1, seq_length, seq_length)
677
+
678
+ position_ids = torch.arange(seq_length, dtype=torch.long,
679
+ device=inputs_embeds.device)
680
+ position_ids = position_ids.unsqueeze(0).expand_as(input_id)
681
+
682
+ if reset_position_ids:
683
+ position_ids = position_ids.clone()
684
+
685
+ if reset_position_ids or reset_attention_mask:
686
+ # Loop through the batches:
687
+ for b in range(micro_batch_size):
688
+
689
+ # Find indecies where EOD token is.
690
+ eod_index = position_ids[b, input_id[b] == eod_token]
691
+
692
+ # Detach indecies from positions if going to modify positions.
693
+ if reset_position_ids:
694
+ eod_index = eod_index.clone()
695
+ # Loop through EOD indecies:
696
+ prev_index = 0
697
+ for j in range(eod_index.size()[0]):
698
+ i = eod_index[j]
699
+ # Mask attention loss.
700
+ if reset_attention_mask:
701
+ attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
702
+ # Reset positions.
703
+ if reset_position_ids:
704
+ position_ids[b, (i + 1):] -= (i + 1 - prev_index)
705
+ prev_index = i + 1
706
+
707
+ inverted_mask = 1 - attention_mask
708
+ output_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min)
709
+ if reset_mask_flag:
710
+ output_attn_mask = output_attn_mask[:,:,-1:,:]
711
+ return output_attn_mask, position_ids
712
+
713
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
714
+ def forward(
715
+ self,
716
+ input_ids: torch.LongTensor = None,
717
+ attention_mask: Optional[torch.Tensor] = None,
718
+ position_ids: Optional[torch.LongTensor] = None,
719
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
720
+ inputs_embeds: Optional[torch.FloatTensor] = None,
721
+ use_cache: Optional[bool] = None,
722
+ output_attentions: Optional[bool] = None,
723
+ output_hidden_states: Optional[bool] = None,
724
+ return_dict: Optional[bool] = None,
725
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
726
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
727
+ output_hidden_states = (
728
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
729
+ )
730
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
731
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
732
+ input_ids1 = copy.deepcopy(input_ids)
733
+ reset_mask_flag = False
734
+ if past_key_values:
735
+ input_ids = input_ids[:, -1:]
736
+ if use_cache:
737
+ reset_mask_flag = True
738
+ # retrieve input_ids and inputs_embeds
739
+ if input_ids is not None and inputs_embeds is not None:
740
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
741
+ elif input_ids is not None:
742
+ batch_size, seq_length = input_ids.shape
743
+ elif inputs_embeds is not None:
744
+ batch_size, seq_length, _ = inputs_embeds.shape
745
+ else:
746
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
747
+
748
+ seq_length_with_past = seq_length
749
+ past_key_values_length = 0
750
+
751
+ if past_key_values is not None:
752
+ past_key_values_length = past_key_values[0][0].shape[2]
753
+ seq_length_with_past = seq_length_with_past + past_key_values_length
754
+
755
+ if position_ids is None:
756
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
757
+ position_ids = torch.arange(
758
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
759
+ )
760
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
761
+ else:
762
+ position_ids = position_ids.view(-1, seq_length).long()
763
+ if inputs_embeds is None:
764
+ inputs_embeds = self.embed_tokens(input_ids)
765
+ if self.training or self.reset_position_ids:
766
+ attention_mask, _ = self._prepare_decoder_attention_mask_training(input_ids1, inputs_embeds, self.eod_token, reset_mask_flag, self.reset_attention_mask, self.reset_position_ids)
767
+
768
+ else:
769
+ if attention_mask is None:
770
+ attention_mask = torch.ones(
771
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
772
+ )
773
+ attention_mask = self._prepare_decoder_attention_mask(
774
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
775
+ )
776
+
777
+ hidden_states = inputs_embeds
778
+
779
+ if self.gradient_checkpointing and self.training:
780
+ if use_cache:
781
+ logger.warning_once(
782
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
783
+ )
784
+ use_cache = False
785
+
786
+ # decoder layers
787
+ all_hidden_states = () if output_hidden_states else None
788
+ all_self_attns = () if output_attentions else None
789
+ next_decoder_cache = () if use_cache else None
790
+
791
+ for idx, decoder_layer in enumerate(self.layers):
792
+ if output_hidden_states:
793
+ all_hidden_states += (hidden_states,)
794
+
795
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
796
+
797
+ if self.gradient_checkpointing and self.training:
798
+
799
+ def create_custom_forward(module):
800
+ def custom_forward(*inputs):
801
+ # None for past_key_value
802
+ return module(*inputs, output_attentions, None)
803
+
804
+ return custom_forward
805
+
806
+ layer_outputs = torch.utils.checkpoint.checkpoint(
807
+ create_custom_forward(decoder_layer),
808
+ hidden_states,
809
+ attention_mask,
810
+ position_ids,
811
+ None,
812
+ )
813
+ else:
814
+ layer_outputs = decoder_layer(
815
+ hidden_states,
816
+ attention_mask=attention_mask,
817
+ position_ids=position_ids,
818
+ past_key_value=past_key_value,
819
+ output_attentions=output_attentions,
820
+ use_cache=use_cache,
821
+ )
822
+
823
+ hidden_states = layer_outputs[0]
824
+
825
+ if use_cache:
826
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
827
+
828
+ if output_attentions:
829
+ all_self_attns += (layer_outputs[1],)
830
+ hidden_states = self.norm(hidden_states)
831
+
832
+ # add hidden states from the last decoder layer
833
+ if output_hidden_states:
834
+ all_hidden_states += (hidden_states,)
835
+ next_cache = next_decoder_cache if use_cache else None
836
+ if not return_dict:
837
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
838
+ return BaseModelOutputWithPast(
839
+ last_hidden_state=hidden_states,
840
+ past_key_values=next_cache,
841
+ hidden_states=all_hidden_states,
842
+ attentions=all_self_attns,
843
+ )
844
+
845
+
846
+ class YuanForCausalLM(YuanPreTrainedModel):
847
+ def __init__(self, config):
848
+ super().__init__(config)
849
+ self.eod_token = config.eod_token
850
+ self.sep_token = config.sep_token
851
+ self.use_loss_mask = config.use_loss_mask
852
+ self.model = YuanModel(config)
853
+
854
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
855
+
856
+ # Initialize weights and apply final processing
857
+ self.post_init()
858
+
859
+ def get_input_embeddings(self):
860
+ return self.model.embed_tokens
861
+
862
+ def set_input_embeddings(self, value):
863
+ self.model.embed_tokens = value
864
+
865
+ def get_output_embeddings(self):
866
+ return self.lm_head
867
+
868
+ def set_output_embeddings(self, new_embeddings):
869
+ self.lm_head = new_embeddings
870
+
871
+ def set_decoder(self, decoder):
872
+ self.model = decoder
873
+
874
+ def get_decoder(self):
875
+ return self.model
876
+
877
+ def get_loss_mask(self, input_ids, labels, eod_token, sep_token):
878
+ micro_batch_size, seq_length = input_ids.size()
879
+ loss_mask = torch.ones(input_ids.size(), dtype=torch.float, device=input_ids.device)
880
+
881
+ position_ids = torch.arange(seq_length, dtype=torch.long,
882
+ device=input_ids.device)
883
+ position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
884
+
885
+
886
+ """modify loss_mask to only calculate the loss of the answer (separated with [SEP])"""
887
+
888
+ for b in range(micro_batch_size):
889
+ eod_indexs = position_ids[b, input_ids[b] == eod_token]
890
+ sep_indexs = position_ids[b, input_ids[b] == sep_token]
891
+
892
+ if len(eod_indexs) == 0 or len(sep_indexs) == 0:
893
+ loss_mask[b] = 1.0
894
+ else:
895
+ if eod_indexs[0] > sep_indexs[0]:
896
+ loss_mask[b, 0:sep_indexs[0]] = 0
897
+
898
+ if len(eod_indexs) == len(sep_indexs):
899
+ for ii, eod_index in enumerate(eod_indexs):
900
+ start_index = eod_index
901
+ if ii == (len(sep_indexs) - 1):
902
+ stop_index = seq_length
903
+ else:
904
+ stop_index = sep_indexs[ii + 1]
905
+ loss_mask[b, start_index:stop_index] = 0.0
906
+ else:
907
+ if len(eod_indexs) > len(sep_indexs):
908
+ loss_mask[b,:] = 1.0
909
+ else:
910
+ for ii, eod_index in enumerate(eod_indexs):
911
+ start_index = eod_index
912
+ stop_index = sep_indexs[ii + 1]
913
+
914
+ loss_mask[b, start_index:stop_index] = 0.0
915
+
916
+ elif eod_indexs[0] < sep_indexs[0]:
917
+
918
+ if len(eod_indexs) == len(sep_indexs):
919
+ for ii, eod_index in enumerate(eod_indexs):
920
+ start_index = eod_index
921
+ stop_index = sep_indexs[ii]
922
+ loss_mask[b, start_index:stop_index] = 0.0
923
+
924
+ else:
925
+ if len(eod_indexs) < len(sep_indexs):
926
+ loss_mask[b,:] = 1.0
927
+ else:
928
+ for ii, eod_index in enumerate(eod_indexs):
929
+ start_index = eod_index
930
+ if ii >= len(sep_indexs):
931
+ stop_index = seq_length
932
+ else:
933
+ stop_index = sep_indexs[ii]
934
+ loss_mask[b, start_index:stop_index] = 0.0
935
+
936
+ loss_mask[input_ids == eod_token] = 1.0
937
+ return loss_mask
938
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
939
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
940
+ def forward(
941
+ self,
942
+ input_ids: torch.LongTensor = None,
943
+ attention_mask: Optional[torch.Tensor] = None,
944
+ position_ids: Optional[torch.LongTensor] = None,
945
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
946
+ inputs_embeds: Optional[torch.FloatTensor] = None,
947
+ labels: Optional[torch.LongTensor] = None,
948
+ use_cache: Optional[bool] = None,
949
+ output_attentions: Optional[bool] = None,
950
+ output_hidden_states: Optional[bool] = None,
951
+ return_dict: Optional[bool] = None,
952
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
953
+ r"""
954
+ Args:
955
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
956
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
957
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
958
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
959
+
960
+ Returns:
961
+
962
+ Example:
963
+
964
+ ```python
965
+ >>> from transformers import AutoTokenizer, YuanForCausalLM
966
+
967
+ >>> model = YuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
968
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
969
+
970
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
971
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
972
+
973
+ >>> # Generate
974
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
975
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
976
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
977
+ ```"""
978
+
979
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
980
+ output_hidden_states = (
981
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
982
+ )
983
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
984
+ outputs = self.model(
985
+ input_ids=input_ids,
986
+ attention_mask=attention_mask,
987
+ position_ids=position_ids,
988
+ past_key_values=past_key_values,
989
+ inputs_embeds=inputs_embeds,
990
+ use_cache=use_cache,
991
+ output_attentions=output_attentions,
992
+ output_hidden_states=output_hidden_states,
993
+ return_dict=return_dict,
994
+ )
995
+
996
+ hidden_states = outputs[0]
997
+ logits = self.lm_head(hidden_states)
998
+ loss = None
999
+ if labels is not None:
1000
+ if self.use_loss_mask:
1001
+ loss_mask = self.get_loss_mask(input_ids, labels, self.eod_token, self.sep_token)
1002
+ # Shift so that tokens < n predict n
1003
+ shift_logits = logits[..., :-1, :].contiguous()
1004
+ shift_labels = labels[..., 1:].contiguous()
1005
+ # Flatten the tokens
1006
+ if self.use_loss_mask:
1007
+ loss_fct = CrossEntropyLoss(reduction='none')
1008
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1009
+ shift_labels = shift_labels.view(-1)
1010
+ # Enable model parallelism
1011
+ shift_labels = shift_labels.to(shift_logits.device)
1012
+ loss = loss_fct(shift_logits, shift_labels)
1013
+ loss = torch.sum(loss * loss_mask) / loss_mask.sum()
1014
+ else:
1015
+ loss_fct = CrossEntropyLoss()
1016
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1017
+ shift_labels = shift_labels.view(-1)
1018
+ # Enable model parallelism
1019
+ shift_labels = shift_labels.to(shift_logits.device)
1020
+ loss = loss_fct(shift_logits, shift_labels)
1021
+ if not return_dict:
1022
+ output = (logits,) + outputs[1:]
1023
+ return (loss,) + output if loss is not None else output
1024
+
1025
+ return CausalLMOutputWithPast(
1026
+ loss=loss,
1027
+ logits=logits,
1028
+ past_key_values=outputs.past_key_values,
1029
+ hidden_states=hidden_states,
1030
+ attentions=outputs.attentions,
1031
+ )
1032
+
1033
+ def prepare_inputs_for_generation(
1034
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1035
+ ):
1036
+
1037
+ position_ids = kwargs.get("position_ids", None)
1038
+ if attention_mask is not None and position_ids is None:
1039
+ # create position_ids on the fly for batch generation
1040
+ position_ids = attention_mask.long().cumsum(-1) - 1
1041
+ position_ids.masked_fill_(attention_mask == 0, 1)
1042
+ if past_key_values:
1043
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1044
+
1045
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1046
+ if inputs_embeds is not None and past_key_values is None:
1047
+ model_inputs = {"inputs_embeds": inputs_embeds}
1048
+ else:
1049
+ model_inputs = {"input_ids": input_ids}
1050
+
1051
+ model_inputs.update(
1052
+ {
1053
+ "position_ids": position_ids,
1054
+ "past_key_values": past_key_values,
1055
+ "use_cache": kwargs.get("use_cache"),
1056
+ "attention_mask": attention_mask,
1057
+ }
1058
+ )
1059
+ return model_inputs
1060
+
1061
+ @staticmethod
1062
+ def _reorder_cache(past_key_values, beam_idx):
1063
+ reordered_past = ()
1064
+ for layer_past in past_key_values:
1065
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1066
+ return reordered_past
1067
+
1068
+
1069
+ @add_start_docstrings(
1070
+ """
1071
+ The Yuan Model transformer with a sequence classification head on top (linear layer).
1072
+
1073
+ [`YuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1074
+ (e.g. GPT-2) do.
1075
+
1076
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1077
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1078
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1079
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1080
+ each row of the batch).
1081
+ """,
1082
+ YUAN_START_DOCSTRING,
1083
+ )
1084
+ class YuanForSequenceClassification(YuanPreTrainedModel):
1085
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1086
+
1087
+ def __init__(self, config):
1088
+ super().__init__(config)
1089
+ self.num_labels = config.num_labels
1090
+ self.model = YuanModel(config)
1091
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1092
+
1093
+ # Initialize weights and apply final processing
1094
+ self.post_init()
1095
+
1096
+ def get_input_embeddings(self):
1097
+ return self.model.embed_tokens
1098
+
1099
+ def set_input_embeddings(self, value):
1100
+ self.model.embed_tokens = value
1101
+
1102
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
1103
+ def forward(
1104
+ self,
1105
+ input_ids: torch.LongTensor = None,
1106
+ attention_mask: Optional[torch.Tensor] = None,
1107
+ position_ids: Optional[torch.LongTensor] = None,
1108
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1109
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1110
+ labels: Optional[torch.LongTensor] = None,
1111
+ use_cache: Optional[bool] = None,
1112
+ output_attentions: Optional[bool] = None,
1113
+ output_hidden_states: Optional[bool] = None,
1114
+ return_dict: Optional[bool] = None,
1115
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1116
+ r"""
1117
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1118
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1119
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1120
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1121
+ """
1122
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1123
+ transformer_outputs = self.model(
1124
+ input_ids,
1125
+ attention_mask=attention_mask,
1126
+ position_ids=position_ids,
1127
+ past_key_values=past_key_values,
1128
+ inputs_embeds=inputs_embeds,
1129
+ use_cache=use_cache,
1130
+ output_attentions=output_attentions,
1131
+ output_hidden_states=output_hidden_states,
1132
+ return_dict=return_dict,
1133
+ )
1134
+ hidden_states = transformer_outputs[0]
1135
+ logits = self.score(hidden_states)
1136
+
1137
+ if input_ids is not None:
1138
+ batch_size = input_ids.shape[0]
1139
+ else:
1140
+ batch_size = inputs_embeds.shape[0]
1141
+
1142
+ if self.config.pad_token_id is None and batch_size != 1:
1143
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1144
+ if self.config.pad_token_id is None:
1145
+ sequence_lengths = -1
1146
+ else:
1147
+ if input_ids is not None:
1148
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1149
+ else:
1150
+ sequence_lengths = -1
1151
+
1152
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1153
+
1154
+ loss = None
1155
+ if labels is not None:
1156
+ labels = labels.to(logits.device)
1157
+ if self.config.problem_type is None:
1158
+ if self.num_labels == 1:
1159
+ self.config.problem_type = "regression"
1160
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1161
+ self.config.problem_type = "single_label_classification"
1162
+ else:
1163
+ self.config.problem_type = "multi_label_classification"
1164
+
1165
+ if self.config.problem_type == "regression":
1166
+ loss_fct = MSELoss()
1167
+ if self.num_labels == 1:
1168
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1169
+ else:
1170
+ loss = loss_fct(pooled_logits, labels)
1171
+ elif self.config.problem_type == "single_label_classification":
1172
+ loss_fct = CrossEntropyLoss()
1173
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1174
+ elif self.config.problem_type == "multi_label_classification":
1175
+ loss_fct = BCEWithLogitsLoss()
1176
+ loss = loss_fct(pooled_logits, labels)
1177
+ if not return_dict:
1178
+ output = (pooled_logits,) + transformer_outputs[1:]
1179
+ return ((loss,) + output) if loss is not None else output
1180
+
1181
+ return SequenceClassifierOutputWithPast(
1182
+ loss=loss,
1183
+ logits=pooled_logits,
1184
+ past_key_values=transformer_outputs.past_key_values,
1185
+ hidden_states=transformer_outputs.hidden_states,
1186
+ attentions=transformer_outputs.attentions,
1187
+ )
1188
+
1189
+