Update README.md
Browse files
README.md
CHANGED
@@ -208,7 +208,7 @@ Statistics of the TRAIN+VALIDATION set :
|
|
208 |
The FLAIR-INC_rgb_12cl_resnet34-unet model was trained on a HPC/AI resources provided by GENCI-IDRIS (Grant 2022-A0131013803).
|
209 |
16 V100 GPUs were used ( 4 nodes, 4 GPUS per node). With this configuration the approximate learning time is 6 minutes per epoch.
|
210 |
|
211 |
-
FLAIR-INC_rgbie_12cl_resnet34-unet was obtained for num_epoch=
|
212 |
|
213 |
|
214 |
<div style="position: relative; text-align: center;">
|
@@ -234,25 +234,25 @@ The choice of a separate TEST set instead of cross validation was made to be coh
|
|
234 |
|
235 |
#### Metrics
|
236 |
|
237 |
-
With the evaluation protocol, the **FLAIR-INC_rgb_12cl_resnet34-unet** have been evaluated to **OA=
|
238 |
|
239 |
The following table give the class-wise metrics :
|
240 |
|
241 |
| Classes | IoU (%) | Fscore (%) | Precision (%) | Recall (%) |
|
242 |
| ------------------- | ----------|---------|---------|---------|
|
243 |
-
| building
|
244 |
-
| pervious_surface
|
245 |
-
| impervious_surface
|
246 |
-
| bare_soil
|
247 |
-
| water
|
248 |
-
| coniferous
|
249 |
-
| deciduous
|
250 |
-
| brushwood
|
251 |
-
| vineyard
|
252 |
-
| herbaceous
|
253 |
-
| agricultural_land
|
254 |
-
| plowed_land
|
255 |
-
| **average** | **
|
256 |
|
257 |
|
258 |
|
@@ -265,9 +265,9 @@ The following illustration gives the resulting confusion matrix :
|
|
265 |
|
266 |
<div style="position: relative; text-align: center;">
|
267 |
<p style="margin: 0;">Normalized Confusion Matrix (precision)</p>
|
268 |
-
<img src="FLAIR-
|
269 |
<p style="margin: 0;">Normalized Confusion Matrix (recall)</p>
|
270 |
-
<img src="FLAIR-
|
271 |
</div>
|
272 |
|
273 |
|
|
|
208 |
The FLAIR-INC_rgb_12cl_resnet34-unet model was trained on a HPC/AI resources provided by GENCI-IDRIS (Grant 2022-A0131013803).
|
209 |
16 V100 GPUs were used ( 4 nodes, 4 GPUS per node). With this configuration the approximate learning time is 6 minutes per epoch.
|
210 |
|
211 |
+
FLAIR-INC_rgbie_12cl_resnet34-unet was obtained for num_epoch=65 with corresponding val_loss=0.55.
|
212 |
|
213 |
|
214 |
<div style="position: relative; text-align: center;">
|
|
|
234 |
|
235 |
#### Metrics
|
236 |
|
237 |
+
With the evaluation protocol, the **FLAIR-INC_rgb_12cl_resnet34-unet** have been evaluated to **OA=75.238%** and **mIoU=60.706%**.
|
238 |
|
239 |
The following table give the class-wise metrics :
|
240 |
|
241 |
| Classes | IoU (%) | Fscore (%) | Precision (%) | Recall (%) |
|
242 |
| ------------------- | ----------|---------|---------|---------|
|
243 |
+
| building | 79.007 | 88.273 | 88.892 | 87.662 |
|
244 |
+
| pervious_surface | 53.805 | 69.965 | 69.400 | 70.540 |
|
245 |
+
| impervious_surface | 72.274 | 83.906 | 84.051 | 83.762 |
|
246 |
+
| bare_soil | 61.068 | 75.829 | 74.271 | 77.454 |
|
247 |
+
| water | 83.352 | 90.920 | 90.149 | 91.705 |
|
248 |
+
| coniferous | 55.612 | 71.475 | 76.065 | 67.408 |
|
249 |
+
| deciduous | 69.265 | 81.842 | 77.871 | 86.239 |
|
250 |
+
| brushwood | 28.487 | 44.342 | 59.572 | 35.314 |
|
251 |
+
| vineyard | 75.632 | 86.126 | 84.467 | 87.850 |
|
252 |
+
| herbaceous | 50.723 | 67.306 | 70.726 | 64.202 |
|
253 |
+
| agricultural_land | 56.752 | 72.410 | 66.711 | 79.172 |
|
254 |
+
| plowed_land | 42.490 | 59.639 | 59.501 | 59.777 |
|
255 |
+
| **average** | **60.706** | **74.336** | **75.140** | **74.257** |
|
256 |
|
257 |
|
258 |
|
|
|
265 |
|
266 |
<div style="position: relative; text-align: center;">
|
267 |
<p style="margin: 0;">Normalized Confusion Matrix (precision)</p>
|
268 |
+
<img src="FLAIR-INC_rgb_12cl_resnet34-unet_confmat_norm-precision.png" alt="drawing" style="width: 70%; display: block; margin: 0 auto;"/>
|
269 |
<p style="margin: 0;">Normalized Confusion Matrix (recall)</p>
|
270 |
+
<img src="FLAIR-INC_rgb_12cl_resnet34-unet_confmat_norm-recall.png" alt="drawing" style="width: 70%; display: block; margin: 0 auto;"/>
|
271 |
</div>
|
272 |
|
273 |
|