--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: deberta-v3-base-finetuned-squad2 results: - task: name: Question Answering type: question-answering dataset: type: squad_v2 name: SQuAD 2 config: squad_v2 split: validation args: en metrics: - type: exact_match value: 84.56161037648447 name: Exact-Match verified: true - type: f1 value: 87.81110592215731 name: F1-score verified: true language: - en pipeline_tag: question-answering metrics: - exact_match - f1 --- ## Model description DeBERTa-v3-base fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model. The DeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has only 86M backbone parameters with a vocabulary containing 128K tokens which introduces 98M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2. Suitable for Question-Answering tasks, predicts answer spans within the context provided.
**Language model:** microsoft/deberta-v3-base **Language:** English **Downstream-task:** Question-Answering **Training data:** Train-set SQuAD 2.0 **Evaluation data:** Evaluation-set SQuAD 2.0 **Hardware Accelerator used**: GPU Tesla T4 ## Intended uses & limitations For Question-Answering - ```python !pip install transformers from transformers import pipeline model_checkpoint = "IProject-10/deberta-v3-base-finetuned-squad2" question_answerer = pipeline("question-answering", model=model_checkpoint) context = """ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. """ question = "Which deep learning libraries back 🤗 Transformers?" question_answerer(question=question, context=context) ``` ## Results Evaluation on SQuAD 2.0 validation dataset: ``` exact: 84.56161037648447, f1: 87.81110592215731, total: 11873, HasAns_exact: 81.62955465587045, HasAns_f1: 88.13786447600818, HasAns_total: 5928, NoAns_exact: 87.48528174936922, NoAns_f1: 87.48528174936922, NoAns_total: 5945, best_exact: 84.56161037648447, best_exact_thresh: 0.9994288682937622, best_f1: 87.81110592215778, best_f1_thresh: 0.9994288682937622, total_time_in_seconds: 336.43560706100106, samples_per_second: 35.29055709566211, latency_in_seconds: 0.028336191953255374 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7299 | 1.0 | 8217 | 0.7246 | | 0.5104 | 2.0 | 16434 | 0.7321 | | 0.3547 | 3.0 | 24651 | 0.8493 | This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8493 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3