Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,68 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
latitude_mean: 39.951631102585964\
|
2 |
+
latitude_std: 0.0006960598068888123\
|
3 |
+
longitude_mean: -75.1914340210287\
|
4 |
+
longitude_std: 0.0006455062924978866
|
5 |
+
|
6 |
+
```
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from huggingface_hub import PyTorchModelHubMixin
|
13 |
+
import torchvision.models as models
|
14 |
+
|
15 |
+
class SimpleCNN(nn.Module, PyTorchModelHubMixin):
|
16 |
+
def __init__(self):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
# Convolutional layers
|
20 |
+
self.conv3to32 = nn.Conv2d(in_channels=3, out_channels=15, kernel_size=9, stride=1, padding=4)
|
21 |
+
|
22 |
+
self.conv32to32kernel5 = nn.Conv2d(in_channels=15, out_channels=15, kernel_size=5, stride=1, padding=2)
|
23 |
+
|
24 |
+
self.conv32to64 = nn.Conv2d(in_channels=15, out_channels=30, kernel_size=3, stride=1, padding=1)
|
25 |
+
|
26 |
+
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
|
27 |
+
self.dropout = nn.Dropout(0.5)
|
28 |
+
|
29 |
+
self.linear_input_dims = 30*56*56
|
30 |
+
self.fc_1 = nn.Linear(self.linear_input_dims, 100)
|
31 |
+
self.fc_2 = nn.Linear(100, 2)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
x = F.relu(self.conv3to32(x))
|
35 |
+
x = F.relu(self.conv32to32kernel5(x))
|
36 |
+
|
37 |
+
|
38 |
+
x = self.pool2(x)
|
39 |
+
x = F.relu(self.conv32to64(x))
|
40 |
+
|
41 |
+
x = self.pool2(x)
|
42 |
+
x = self.dropout(x)
|
43 |
+
|
44 |
+
x = x.view(-1, self.linear_input_dims)
|
45 |
+
x = F.relu(self.fc_1(x))
|
46 |
+
x = self.fc_2(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
def save_model(self, save_path):
|
50 |
+
"""Save model locally using the Hugging Face format."""
|
51 |
+
self.save_pretrained(save_path)
|
52 |
+
|
53 |
+
def push_model(self, repo_name):
|
54 |
+
"""Push the model to the Hugging Face Hub."""
|
55 |
+
self.push_to_hub(repo_name)
|
56 |
+
|
57 |
+
|
58 |
+
# Specify the repository and the filename of the model you want to load
|
59 |
+
repo_id = "IanAndJohn/Model_Ian" # Replace with your repo name
|
60 |
+
filename = model_save_path
|
61 |
+
|
62 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
63 |
+
|
64 |
+
# Load the model using torch
|
65 |
+
model = SimpleCNN()
|
66 |
+
model.load_state_dict(torch.load(model_path))
|
67 |
+
model.eval() # Set the model to evaluation mode
|
68 |
+
```
|