--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:700 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Goodwill arising from the acquisition of Xilinx was valued at $22,784 million, attributed mainly to increased synergies expected from the integration of Xilinx into the Company's Embedded and Data Center segments. sentences: - What growth strategy does lululemon plan to employ for their operations in China Mainland? - What was the fair value of the goodwill generated from the acquisition of Xilinx? - How did the products gross margin percentage change from 2022 to 2023? - source_sentence: In 2023, UnitedHealthcare's regulated subsidiaries paid $8.0 billion in dividends to their parent companies. sentences: - What amount did UnitedHealthcare's regulated subsidiaries pay as dividends to their parent companies in 2023? - What initiative does the Basel, Rotterdam and Stockholm Conventions focus on? - What is the primary target of Palantir's customer acquisition strategy? - source_sentence: These assumptions about future disposition of inventory are inherently uncertain and changes in our estimates and assumptions may cause us to realize material write-downs in the future. sentences: - How did the return on average common stockholders’ equity (GAAP) change from 2021 to 2023? - What is the effect of changes in inventory estimates on the company's financial statements? - What is the principal business experience of David M. Chojnowski before his current role as Senior Vice President and Controller? - source_sentence: During the years ended December 31, 2021, 2022 and 2023, the weighted-average fair value of stock options granted under the Plans was $96.50, $79.75 and $65.22 per share, respectively. sentences: - What was the weighted-average grant-date fair value of stock options granted in 2021, 2022, and 2023? - What major weather events contributed to the increase in losses reported in 2023? - What is the V2MOM, and how is it used within the company? - source_sentence: During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million. sentences: - How much does Kroger plan to invest in training its associates in 2023? - What total amount was spent on share repurchases during fiscal year 2023? - What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines? model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.6742857142857143 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8052380952380952 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8458730158730159 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8933333333333333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6742857142857143 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26841269841269844 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16917460317460317 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08933333333333332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6742857142857143 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8052380952380952 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8458730158730159 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8933333333333333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7837644898436449 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7486834215167553 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7524444605977678 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.669047619047619 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8023809523809524 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8444444444444444 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.893015873015873 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.669047619047619 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26746031746031745 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1688888888888889 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08930158730158728 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.669047619047619 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8023809523809524 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8444444444444444 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.893015873015873 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7805515576068588 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.744609410430839 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7483879357643801 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.6623809523809524 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7933333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8334920634920635 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8831746031746032 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6623809523809524 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2644444444444444 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16669841269841268 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08831746031746031 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6623809523809524 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7933333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8334920634920635 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8831746031746032 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.772554826031694 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7372027588813304 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7413385015201707 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.6419047619047619 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7698412698412699 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8131746031746032 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8628571428571429 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6419047619047619 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2566137566137566 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16263492063492063 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08628571428571427 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6419047619047619 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7698412698412699 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8131746031746032 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8628571428571429 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7522219583193863 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7168462459057695 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7216902902285594 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.5901587301587301 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7241269841269842 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7661904761904762 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8185714285714286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5901587301587301 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.24137566137566135 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15323809523809523 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08185714285714285 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5901587301587301 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7241269841269842 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7661904761904762 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8185714285714286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7039266407844053 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6673720710506443 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6731612260450521 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka_test") # Run inference sentences = [ 'During fiscal year 2023, we repurchased 10.4 million shares for approximately $1,295 million.', 'What total amount was spent on share repurchases during fiscal year 2023?', 'What judicial decision occurred in August 2023 regarding the antitrust lawsuits against the airlines?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6743 | | cosine_accuracy@3 | 0.8052 | | cosine_accuracy@5 | 0.8459 | | cosine_accuracy@10 | 0.8933 | | cosine_precision@1 | 0.6743 | | cosine_precision@3 | 0.2684 | | cosine_precision@5 | 0.1692 | | cosine_precision@10 | 0.0893 | | cosine_recall@1 | 0.6743 | | cosine_recall@3 | 0.8052 | | cosine_recall@5 | 0.8459 | | cosine_recall@10 | 0.8933 | | cosine_ndcg@10 | 0.7838 | | cosine_mrr@10 | 0.7487 | | **cosine_map@100** | **0.7524** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.669 | | cosine_accuracy@3 | 0.8024 | | cosine_accuracy@5 | 0.8444 | | cosine_accuracy@10 | 0.893 | | cosine_precision@1 | 0.669 | | cosine_precision@3 | 0.2675 | | cosine_precision@5 | 0.1689 | | cosine_precision@10 | 0.0893 | | cosine_recall@1 | 0.669 | | cosine_recall@3 | 0.8024 | | cosine_recall@5 | 0.8444 | | cosine_recall@10 | 0.893 | | cosine_ndcg@10 | 0.7806 | | cosine_mrr@10 | 0.7446 | | **cosine_map@100** | **0.7484** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6624 | | cosine_accuracy@3 | 0.7933 | | cosine_accuracy@5 | 0.8335 | | cosine_accuracy@10 | 0.8832 | | cosine_precision@1 | 0.6624 | | cosine_precision@3 | 0.2644 | | cosine_precision@5 | 0.1667 | | cosine_precision@10 | 0.0883 | | cosine_recall@1 | 0.6624 | | cosine_recall@3 | 0.7933 | | cosine_recall@5 | 0.8335 | | cosine_recall@10 | 0.8832 | | cosine_ndcg@10 | 0.7726 | | cosine_mrr@10 | 0.7372 | | **cosine_map@100** | **0.7413** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6419 | | cosine_accuracy@3 | 0.7698 | | cosine_accuracy@5 | 0.8132 | | cosine_accuracy@10 | 0.8629 | | cosine_precision@1 | 0.6419 | | cosine_precision@3 | 0.2566 | | cosine_precision@5 | 0.1626 | | cosine_precision@10 | 0.0863 | | cosine_recall@1 | 0.6419 | | cosine_recall@3 | 0.7698 | | cosine_recall@5 | 0.8132 | | cosine_recall@10 | 0.8629 | | cosine_ndcg@10 | 0.7522 | | cosine_mrr@10 | 0.7168 | | **cosine_map@100** | **0.7217** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5902 | | cosine_accuracy@3 | 0.7241 | | cosine_accuracy@5 | 0.7662 | | cosine_accuracy@10 | 0.8186 | | cosine_precision@1 | 0.5902 | | cosine_precision@3 | 0.2414 | | cosine_precision@5 | 0.1532 | | cosine_precision@10 | 0.0819 | | cosine_recall@1 | 0.5902 | | cosine_recall@3 | 0.7241 | | cosine_recall@5 | 0.7662 | | cosine_recall@10 | 0.8186 | | cosine_ndcg@10 | 0.7039 | | cosine_mrr@10 | 0.6674 | | **cosine_map@100** | **0.6732** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.7273 | 1 | 0.6718 | 0.7044 | 0.7160 | 0.6086 | 0.7194 | | 1.4545 | 2 | 0.6897 | 0.7192 | 0.7298 | 0.6329 | 0.7314 | | **2.9091** | **4** | **0.7051** | **0.7292** | **0.7387** | **0.6504** | **0.7409** | | 0.7273 | 1 | 0.7051 | 0.7292 | 0.7387 | 0.6504 | 0.7409 | | 1.4545 | 2 | 0.7148 | 0.7366 | 0.7446 | 0.6636 | 0.7473 | | **2.9091** | **4** | **0.7217** | **0.7413** | **0.7484** | **0.6732** | **0.7524** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```