Ilya-Nazimov
commited on
Commit
•
3f54106
1
Parent(s):
e6a56f6
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: cointegrated/rubert-tiny2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: rubert-tiny2-odonata-extended-305-1-ner
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# rubert-tiny2-odonata-extended-305-1-ner
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0101
|
24 |
+
- Precision: 0.6420
|
25 |
+
- Recall: 0.5821
|
26 |
+
- F1: 0.6106
|
27 |
+
- Accuracy: 0.9967
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 30
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 32 | 0.1033 | 0.0 | 0.0 | 0.0 | 0.9952 |
|
59 |
+
| No log | 2.0 | 64 | 0.0391 | 0.0 | 0.0 | 0.0 | 0.9952 |
|
60 |
+
| No log | 3.0 | 96 | 0.0351 | 0.0 | 0.0 | 0.0 | 0.9952 |
|
61 |
+
| No log | 4.0 | 128 | 0.0321 | 0.0 | 0.0 | 0.0 | 0.9952 |
|
62 |
+
| No log | 5.0 | 160 | 0.0260 | 0.0 | 0.0 | 0.0 | 0.9952 |
|
63 |
+
| No log | 6.0 | 192 | 0.0188 | 0.6809 | 0.1194 | 0.2032 | 0.9955 |
|
64 |
+
| No log | 7.0 | 224 | 0.0158 | 0.6480 | 0.4328 | 0.5190 | 0.9961 |
|
65 |
+
| No log | 8.0 | 256 | 0.0143 | 0.6567 | 0.4925 | 0.5629 | 0.9964 |
|
66 |
+
| No log | 9.0 | 288 | 0.0133 | 0.6573 | 0.4366 | 0.5247 | 0.9963 |
|
67 |
+
| No log | 10.0 | 320 | 0.0127 | 0.5898 | 0.5634 | 0.5763 | 0.9964 |
|
68 |
+
| No log | 11.0 | 352 | 0.0122 | 0.6128 | 0.5373 | 0.5726 | 0.9965 |
|
69 |
+
| No log | 12.0 | 384 | 0.0119 | 0.6122 | 0.6007 | 0.6064 | 0.9965 |
|
70 |
+
| No log | 13.0 | 416 | 0.0114 | 0.6295 | 0.5261 | 0.5732 | 0.9965 |
|
71 |
+
| No log | 14.0 | 448 | 0.0112 | 0.6349 | 0.5709 | 0.6012 | 0.9967 |
|
72 |
+
| No log | 15.0 | 480 | 0.0111 | 0.6174 | 0.6082 | 0.6128 | 0.9966 |
|
73 |
+
| 0.0665 | 16.0 | 512 | 0.0108 | 0.6491 | 0.5522 | 0.5968 | 0.9967 |
|
74 |
+
| 0.0665 | 17.0 | 544 | 0.0108 | 0.6232 | 0.6418 | 0.6324 | 0.9967 |
|
75 |
+
| 0.0665 | 18.0 | 576 | 0.0106 | 0.6571 | 0.5149 | 0.5774 | 0.9967 |
|
76 |
+
| 0.0665 | 19.0 | 608 | 0.0105 | 0.6271 | 0.5522 | 0.5873 | 0.9965 |
|
77 |
+
| 0.0665 | 20.0 | 640 | 0.0105 | 0.6332 | 0.6119 | 0.6224 | 0.9967 |
|
78 |
+
| 0.0665 | 21.0 | 672 | 0.0104 | 0.6390 | 0.5746 | 0.6051 | 0.9966 |
|
79 |
+
| 0.0665 | 22.0 | 704 | 0.0104 | 0.6316 | 0.5821 | 0.6058 | 0.9966 |
|
80 |
+
| 0.0665 | 23.0 | 736 | 0.0103 | 0.6444 | 0.5410 | 0.5882 | 0.9966 |
|
81 |
+
| 0.0665 | 24.0 | 768 | 0.0103 | 0.6287 | 0.5560 | 0.5901 | 0.9966 |
|
82 |
+
| 0.0665 | 25.0 | 800 | 0.0102 | 0.6322 | 0.5709 | 0.6000 | 0.9966 |
|
83 |
+
| 0.0665 | 26.0 | 832 | 0.0102 | 0.6360 | 0.5672 | 0.5996 | 0.9966 |
|
84 |
+
| 0.0665 | 27.0 | 864 | 0.0102 | 0.6352 | 0.5784 | 0.6055 | 0.9966 |
|
85 |
+
| 0.0665 | 28.0 | 896 | 0.0102 | 0.6453 | 0.5634 | 0.6016 | 0.9967 |
|
86 |
+
| 0.0665 | 29.0 | 928 | 0.0101 | 0.6402 | 0.5709 | 0.6036 | 0.9967 |
|
87 |
+
| 0.0665 | 30.0 | 960 | 0.0101 | 0.6420 | 0.5821 | 0.6106 | 0.9967 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.41.2
|
93 |
+
- Pytorch 2.3.1+cpu
|
94 |
+
- Datasets 2.19.2
|
95 |
+
- Tokenizers 0.19.1
|