Ilya-Nazimov commited on
Commit
3f54106
1 Parent(s): e6a56f6

End of training

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: cointegrated/rubert-tiny2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: rubert-tiny2-odonata-extended-305-1-ner
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # rubert-tiny2-odonata-extended-305-1-ner
20
+
21
+ This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0101
24
+ - Precision: 0.6420
25
+ - Recall: 0.5821
26
+ - F1: 0.6106
27
+ - Accuracy: 0.9967
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 30
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 32 | 0.1033 | 0.0 | 0.0 | 0.0 | 0.9952 |
59
+ | No log | 2.0 | 64 | 0.0391 | 0.0 | 0.0 | 0.0 | 0.9952 |
60
+ | No log | 3.0 | 96 | 0.0351 | 0.0 | 0.0 | 0.0 | 0.9952 |
61
+ | No log | 4.0 | 128 | 0.0321 | 0.0 | 0.0 | 0.0 | 0.9952 |
62
+ | No log | 5.0 | 160 | 0.0260 | 0.0 | 0.0 | 0.0 | 0.9952 |
63
+ | No log | 6.0 | 192 | 0.0188 | 0.6809 | 0.1194 | 0.2032 | 0.9955 |
64
+ | No log | 7.0 | 224 | 0.0158 | 0.6480 | 0.4328 | 0.5190 | 0.9961 |
65
+ | No log | 8.0 | 256 | 0.0143 | 0.6567 | 0.4925 | 0.5629 | 0.9964 |
66
+ | No log | 9.0 | 288 | 0.0133 | 0.6573 | 0.4366 | 0.5247 | 0.9963 |
67
+ | No log | 10.0 | 320 | 0.0127 | 0.5898 | 0.5634 | 0.5763 | 0.9964 |
68
+ | No log | 11.0 | 352 | 0.0122 | 0.6128 | 0.5373 | 0.5726 | 0.9965 |
69
+ | No log | 12.0 | 384 | 0.0119 | 0.6122 | 0.6007 | 0.6064 | 0.9965 |
70
+ | No log | 13.0 | 416 | 0.0114 | 0.6295 | 0.5261 | 0.5732 | 0.9965 |
71
+ | No log | 14.0 | 448 | 0.0112 | 0.6349 | 0.5709 | 0.6012 | 0.9967 |
72
+ | No log | 15.0 | 480 | 0.0111 | 0.6174 | 0.6082 | 0.6128 | 0.9966 |
73
+ | 0.0665 | 16.0 | 512 | 0.0108 | 0.6491 | 0.5522 | 0.5968 | 0.9967 |
74
+ | 0.0665 | 17.0 | 544 | 0.0108 | 0.6232 | 0.6418 | 0.6324 | 0.9967 |
75
+ | 0.0665 | 18.0 | 576 | 0.0106 | 0.6571 | 0.5149 | 0.5774 | 0.9967 |
76
+ | 0.0665 | 19.0 | 608 | 0.0105 | 0.6271 | 0.5522 | 0.5873 | 0.9965 |
77
+ | 0.0665 | 20.0 | 640 | 0.0105 | 0.6332 | 0.6119 | 0.6224 | 0.9967 |
78
+ | 0.0665 | 21.0 | 672 | 0.0104 | 0.6390 | 0.5746 | 0.6051 | 0.9966 |
79
+ | 0.0665 | 22.0 | 704 | 0.0104 | 0.6316 | 0.5821 | 0.6058 | 0.9966 |
80
+ | 0.0665 | 23.0 | 736 | 0.0103 | 0.6444 | 0.5410 | 0.5882 | 0.9966 |
81
+ | 0.0665 | 24.0 | 768 | 0.0103 | 0.6287 | 0.5560 | 0.5901 | 0.9966 |
82
+ | 0.0665 | 25.0 | 800 | 0.0102 | 0.6322 | 0.5709 | 0.6000 | 0.9966 |
83
+ | 0.0665 | 26.0 | 832 | 0.0102 | 0.6360 | 0.5672 | 0.5996 | 0.9966 |
84
+ | 0.0665 | 27.0 | 864 | 0.0102 | 0.6352 | 0.5784 | 0.6055 | 0.9966 |
85
+ | 0.0665 | 28.0 | 896 | 0.0102 | 0.6453 | 0.5634 | 0.6016 | 0.9967 |
86
+ | 0.0665 | 29.0 | 928 | 0.0101 | 0.6402 | 0.5709 | 0.6036 | 0.9967 |
87
+ | 0.0665 | 30.0 | 960 | 0.0101 | 0.6420 | 0.5821 | 0.6106 | 0.9967 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.41.2
93
+ - Pytorch 2.3.1+cpu
94
+ - Datasets 2.19.2
95
+ - Tokenizers 0.19.1