File size: 4,388 Bytes
8f2d64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-base-uncased_11112024T103209
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased_11112024T103209

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4280
- F1: 0.8712
- Learning Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 600
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | F1     | Rate   |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| No log        | 0.9942  | 86   | 1.7522          | 0.1396 | 0.0000 |
| No log        | 2.0     | 173  | 1.5504          | 0.3793 | 0.0000 |
| No log        | 2.9942  | 259  | 1.3168          | 0.5063 | 0.0000 |
| No log        | 4.0     | 346  | 1.0578          | 0.5762 | 0.0000 |
| No log        | 4.9942  | 432  | 0.8963          | 0.6332 | 0.0000 |
| 1.3438        | 6.0     | 519  | 0.7904          | 0.6792 | 0.0000 |
| 1.3438        | 6.9942  | 605  | 0.6959          | 0.7280 | 2e-05  |
| 1.3438        | 8.0     | 692  | 0.5408          | 0.8100 | 2e-05  |
| 1.3438        | 8.9942  | 778  | 0.4754          | 0.8469 | 0.0000 |
| 1.3438        | 10.0    | 865  | 0.4280          | 0.8712 | 0.0000 |
| 1.3438        | 10.9942 | 951  | 0.4683          | 0.8750 | 0.0000 |
| 0.4057        | 12.0    | 1038 | 0.5107          | 0.8769 | 0.0000 |
| 0.4057        | 12.9942 | 1124 | 0.5242          | 0.8879 | 0.0000 |
| 0.4057        | 14.0    | 1211 | 0.6143          | 0.8807 | 0.0000 |
| 0.4057        | 14.9942 | 1297 | 0.6044          | 0.8844 | 0.0000 |
| 0.4057        | 16.0    | 1384 | 0.5825          | 0.8942 | 0.0000 |
| 0.4057        | 16.9942 | 1470 | 0.6377          | 0.8896 | 0.0000 |
| 0.0457        | 18.0    | 1557 | 0.7469          | 0.8774 | 0.0000 |
| 0.0457        | 18.9942 | 1643 | 0.7769          | 0.8818 | 0.0000 |
| 0.0457        | 20.0    | 1730 | 0.6606          | 0.8943 | 0.0000 |
| 0.0457        | 20.9942 | 1816 | 0.7124          | 0.8915 | 0.0000 |
| 0.0457        | 22.0    | 1903 | 0.7385          | 0.8879 | 0.0000 |
| 0.0457        | 22.9942 | 1989 | 0.6596          | 0.8977 | 0.0000 |
| 0.0106        | 24.0    | 2076 | 0.7477          | 0.8887 | 0.0000 |
| 0.0106        | 24.9942 | 2162 | 0.6636          | 0.8990 | 0.0000 |
| 0.0106        | 26.0    | 2249 | 0.7530          | 0.8924 | 0.0000 |
| 0.0106        | 26.9942 | 2335 | 0.7221          | 0.8944 | 0.0000 |
| 0.0106        | 28.0    | 2422 | 0.7504          | 0.8931 | 0.0000 |
| 0.0051        | 28.9942 | 2508 | 0.7383          | 0.8951 | 0.0000 |
| 0.0051        | 30.0    | 2595 | 0.7678          | 0.8904 | 0.0000 |
| 0.0051        | 30.9942 | 2681 | 0.7626          | 0.8903 | 0.0000 |
| 0.0051        | 32.0    | 2768 | 0.7509          | 0.8915 | 0.0000 |
| 0.0051        | 32.9942 | 2854 | 0.7659          | 0.8915 | 2e-06  |
| 0.0051        | 34.0    | 2941 | 0.7721          | 0.8905 | 0.0000 |
| 0.0032        | 34.9942 | 3027 | 0.7705          | 0.8904 | 1e-06  |
| 0.0032        | 36.0    | 3114 | 0.7724          | 0.8893 | 7e-07  |
| 0.0032        | 36.9942 | 3200 | 0.7740          | 0.8895 | 4e-07  |
| 0.0032        | 38.0    | 3287 | 0.7749          | 0.8892 | 1e-07  |
| 0.0032        | 38.9942 | 3373 | 0.7746          | 0.8889 | 0.0    |
| 0.0032        | 39.7688 | 3440 | 0.7747          | 0.8889 | 0.0    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.19.1