File size: 5,218 Bytes
34e7363 7cc57ac 34e7363 31b4e1e deee7e1 7cc57ac 31b4e1e 7cc57ac 34e7363 31b4e1e 34e7363 31b4e1e 34e7363 b35fab6 34e7363 0b8beeb 34e7363 5cdd4d8 31b4e1e 85478d1 4f4c3d8 f2a7ecb a0ebbc7 5cdd4d8 59e5718 5cdd4d8 d3c70c7 04add3f 7cc57ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: apache-2.0
library_name: transformers
tags:
- finetune
- dpo
- chatml
base_model:
- InferenceIllusionist/Excalibur-7b
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: Excalibur-7b-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.93
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.46
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 70.82
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Excalibur-7b-DPO
name: Open LLM Leaderboard
---
# Excalibur-7b-DPO
<img src="https://i.imgur.com/pbPbqq0.jpeg" width="550"/>
An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases*
<b>GGUFs available [here](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO-GGUF)</b>
## Notes & Methodology
* [Excalibur-7b](https://huggingface.co/InferenceIllusionist/Excalibur-7b) fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
* This is a quick experiment to determine the impact of DPO finetuning on the original base model
* Ran for a little over an hour on a single A100
* Internal benchmarks showed improvement over base model, awaiting final results
* Precision: bfloat16
## Sample Question - Vision
<img src="https://i.imgur.com/7aRWtzU.jpeg" width="425"/>
*<b>Requires additional mmproj file. You have two options for vision functionality (available inside this repo):</b>
* [Quantized - Limited VRAM Option (197mb)](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mistral-7b-mmproj-v1.5-Q4_1.gguf?download=true)
* [Unquantized - Premium Option / Best Quality (596mb)](https://huggingface.co/InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mmproj-model-f16.gguf?download=true)
Select the gguf file of your choice in [Koboldcpp](https://github.com/LostRuins/koboldcpp/releases/) as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu:
<img src="https://i.imgur.com/x8vqH29.png" width="425"/>
## Prompt Format
* For best results please use ChatML for the prompt format. Alpaca may also work.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_InferenceIllusionist__Excalibur-7b-DPO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.84|
|AI2 Reasoning Challenge (25-Shot)|70.90|
|HellaSwag (10-Shot) |87.93|
|MMLU (5-Shot) |65.46|
|TruthfulQA (0-shot) |70.82|
|Winogrande (5-shot) |82.48|
|GSM8k (5-shot) |65.43|
|