File size: 902 Bytes
34e7363
31b4e1e
 
34e7363
31b4e1e
 
 
 
 
34e7363
 
 
31b4e1e
34e7363
31b4e1e
34e7363
31b4e1e
34e7363
 
31b4e1e
 
 
85478d1
a0ebbc7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
---
base_model:
- InferenceIllusionist/Excalibur-7b
library_name: transformers
tags:
- finetune
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
---


# Excalibur-7b-DPO

<img src="https://i.imgur.com/pbPbqq0.jpeg" width="550"/>

An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of this model's responses, especially when used in vision use cases*


### Notes & Methodology
* [Excalibur-7b](https://huggingface.co/InferenceIllusionist/Excalibur-7b) fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs
* This is a quick experiment to determine the impact of DPO finetuning on the original base model
* Ran for a little over an hour on a single A100



*Requires [mistral-7b-mmproj-v1.5-Q4_1](https://huggingface.co/koboldcpp/mmproj/resolve/main/mistral-7b-mmproj-v1.5-Q4_1.gguf?download=true) file to be loaded in Kobold