File size: 13,741 Bytes
f496f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# # USAGE
# # python mask_detect_video.py --video your_video.mp4
# import tensorflow as tf
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
# from tensorflow.keras.preprocessing.image import img_to_array
# from tensorflow.keras.models import load_model
# import numpy as np
# import argparse
# import cv2
# import os

# def mask_video():

#     # construct the argument parser and parse the arguments
#     parser = argparse.ArgumentParser()
#     parser.add_argument("-f", "--face", type=str, default="face_detector",
#                         help="Path to face detector model directory")
#     parser.add_argument("-m", "--model", type=str, default="mask_detector.model",
#                         help="Path to trained face mask detector model")
#     parser.add_argument('-s', '--size', type=int, default=64,
#                         help="Size of face image")
#     parser.add_argument("-c", "--confidence", type=float, default=0.5,
#                         help="Minimum probability to filter weak detections")
#     parser.add_argument("-v", "--video", type=str,
#                         help="Path to input video file")
#     args = parser.parse_args()
#     # Suppress TensorFlow INFO-level messages
#     import tensorflow as tf
#     tf.get_logger().setLevel('ERROR')  # or 'WARNING' or 'INFO'

#     # load our serialized face detector model from disk
#     prototxtPath = os.path.sep.join([args.face, "deploy.prototxt"])
#     weightsPath = os.path.sep.join([args.face, "res10_300x300_ssd_iter_140000.caffemodel"])
#     net = cv2.dnn.readNet(prototxtPath, weightsPath)

#     # load the face mask detector model from disk
#     model = load_model(args.model)

#     # initialize the video stream
#     if args.video:
#         vs = cv2.VideoCapture(args.video)
#     else:
#         print("[ERROR] No video file provided.")
#         return

#     while True:
#         # grab the frame from the video stream
#         (grabbed, frame) = vs.read()

#         # if the frame was not grabbed, then we have reached the end
#         # of the stream
#         if not grabbed:
#             break

#         # detect faces in the frame
#         detect_and_draw(frame, net, model, args)

#         # show the output frame
#         cv2.imshow("Frame", frame)

#         # break the loop if the 'q' key is pressed
#         if cv2.waitKey(1) & 0xFF == ord('q'):
#             break

#     # release the video stream and close any open windows
#     vs.release()
#     cv2.destroyAllWindows()

# def detect_and_draw(frame, net, model, args):
#     (h, w) = frame.shape[:2]
#     blob = cv2.dnn.blobFromImage(frame, scalefactor=1.0, mean=(104.0, 177.0, 123.0))

#     net.setInput(blob)
#     detections = net.forward()

#     for i in range(0, detections.shape[2]):
#         confidence = detections[0, 0, i, 2]
#         if confidence < args.confidence:
#             # Drop low confidence detections
#             continue

#         box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
#         (startX, startY, endX, endY) = box.astype("int")
#         (startX, startY) = (max(0, startX), max(0, startY))
#         (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

#         try:
#             face = frame[startY:endY, startX:endX]
#             face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
#             face = cv2.resize(face, (args.size, args.size))
#             face = img_to_array(face)
#             face = preprocess_input(face)
#             face = np.expand_dims(face, axis=0)

#             mask = model.predict(face)[0]

#             label = "Mask" if mask < 0.5 else "No Mask"
#             color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
#             # display the label and bounding box rectangle on the output frame
#             cv2.putText(frame, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 1)
#             cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
#         except Exception as e:
#             print(e)

# if __name__ == "__main__":
#     mask_video()


# # USAGE
# # python mask_detect_video.py --video your_video.mp4
# import tensorflow as tf
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
# import numpy as np
# import argparse
# import cv2
# import os

# def mask_video():
#     # construct the argument parser and parse the arguments
#     parser = argparse.ArgumentParser()
#     parser.add_argument("-f", "--face", type=str, default="face_detector",
#                         help="Path to face detector model directory")
#     parser.add_argument("-m", "--model", type=str, default="mask_detector.model",
#                         help="Path to trained face mask detector model")
#     parser.add_argument('-s', '--size', type=int, default=64,
#                         help="Size of face image")
#     parser.add_argument("-c", "--confidence", type=float, default=0.5,
#                         help="Minimum probability to filter weak detections")
#     parser.add_argument("-v", "--video", type=str,
#                         help="Path to input video file")
#     args = parser.parse_args()
#     # Suppress TensorFlow INFO-level messages
#     import tensorflow as tf
#     tf.get_logger().setLevel('ERROR')  # or 'WARNING' or 'INFO'

#     # load our serialized face detector model from disk
#     prototxtPath = os.path.sep.join([args.face, "deploy.prototxt"])
#     weightsPath = os.path.sep.join([args.face, "res10_300x300_ssd_iter_140000.caffemodel"])
#     net = cv2.dnn.readNet(prototxtPath, weightsPath)

#     # initialize the video stream
#     if args.video:
#         vs = cv2.VideoCapture(args.video)
#     else:
#         print("[ERROR] No video file provided.")
#         return

#     while True:
#         # grab the frame from the video stream
#         (grabbed, frame) = vs.read()

#         # if the frame was not grabbed, then we have reached the end
#         # of the stream
#         if not grabbed:
#             break

#         # detect faces in the frame
#         detect_and_draw(frame, net, args)

#         # show the output frame
#         cv2.imshow("Frame", frame)

#         # break the loop if the 'q' key is pressed
#         if cv2.waitKey(1) & 0xFF == ord('q'):
#             break

#     # release the video stream and close any open windows
#     vs.release()
#     cv2.destroyAllWindows()

# def detect_and_draw(frame, net, args):
#     (h, w) = frame.shape[:2]
#     blob = cv2.dnn.blobFromImage(frame, scalefactor=1.0, mean=(104.0, 177.0, 123.0))

#     net.setInput(blob)
#     detections = net.forward()

#     for i in range(0, detections.shape[2]):
#         confidence = detections[0, 0, i, 2]
#         if confidence < args.confidence:
#             # Drop low confidence detections
#             continue

#         box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
#         (startX, startY, endX, endY) = box.astype("int")
#         (startX, startY) = (max(0, startX), max(0, startY))
#         (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

#         # draw a dark pink solid rectangle around the detected face
#         frame[startY:endY, startX:endX, :] = (136, 28, 238)

# if __name__ == "__main__":
#     mask_video()

# import tensorflow as tf
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
# import numpy as np
# import argparse
# import cv2
# import os

# def mask_video():
#     # construct the argument parser and parse the arguments
#     parser = argparse.ArgumentParser()
#     parser.add_argument("-f", "--face", type=str, default="face_detector",
#                         help="Path to face detector model directory")
#     parser.add_argument("-m", "--model", type=str, default="mask_detector.model",
#                         help="Path to trained face mask detector model")
#     parser.add_argument('-s', '--size', type=int, default=64,
#                         help="Size of face image")
#     parser.add_argument("-c", "--confidence", type=float, default=0.5,
#                         help="Minimum probability to filter weak detections")
#     parser.add_argument("-v", "--video", type=str,
#                         help="Path to input video file")
#     parser.add_argument("-o", "--output", type=str, default="output.mp4",
#                         help="Path to save the output video file with .mp4 extension")
#     args = parser.parse_args()
#     # Suppress TensorFlow INFO-level messages
#     import tensorflow as tf
#     tf.get_logger().setLevel('ERROR')  # or 'WARNING' or 'INFO'

#     # load our serialized face detector model from disk
#     prototxtPath = os.path.sep.join([args.face, "deploy.prototxt"])
#     weightsPath = os.path.sep.join([args.face, "res10_300x300_ssd_iter_140000.caffemodel"])
#     net = cv2.dnn.readNet(prototxtPath, weightsPath)

#     # initialize the video stream
#     if args.video:
#         vs = cv2.VideoCapture(args.video)
#     else:
#         print("[ERROR] No video file provided.")
#         return

#     # Define the codec and create a VideoWriter object
#     fourcc = cv2.VideoWriter_fourcc(*"mp4v")
#     out = cv2.VideoWriter(args.output, fourcc, 20.0, (int(vs.get(3)), int(vs.get(4))))

#     while True:
#         # grab the frame from the video stream
#         (grabbed, frame) = vs.read()

#         # if the frame was not grabbed, then we have reached the end
#         # of the stream
#         if not grabbed:
#             break

#         # detect faces in the frame
#         detect_and_draw(frame, net, args)

#         # write the output frame to the video file
#         out.write(frame)

#     # release the video stream and close any open windows
#     vs.release()
#     out.release()
#     cv2.destroyAllWindows()

# def detect_and_draw(frame, net, args):
#     (h, w) = frame.shape[:2]
#     blob = cv2.dnn.blobFromImage(frame, scalefactor=1.0, mean=(104.0, 177.0, 123.0))

#     net.setInput(blob)
#     detections = net.forward()

#     for i in range(0, detections.shape[2]):
#         confidence = detections[0, 0, i, 2]
#         if confidence < args.confidence:
#             # Drop low confidence detections
#             continue

#         box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
#         (startX, startY, endX, endY) = box.astype("int")
#         (startX, startY) = (max(0, startX), max(0, startY))
#         (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

#         # draw a dark pink solid rectangle around the detected face
#         frame[startY:endY, startX:endX, :] = (136, 28, 238)

# if __name__ == "__main__":
#     mask_video()



# import tensorflow as tf
# from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
# import numpy as np
# import cv2
# import os
# from werkzeug.datastructures import FileStorage  # Use this if you're using Flask for handling file uploads

# def mask_video(video, output_path="output.mp4"):
#     # Suppress TensorFlow INFO-level messages
#     # tf.get_logger().setLevel('ERROR')  # or 'WARNING' or 'INFO'
#     face_path="privacy/util/face_detect/face_detector"
#     model_path="privacy/util/face_detect/results/Xception-size-64-bs-32-lr-0.0001.h5" 
#     size=64
#     confidence=0.5
#     # Load our serialized face detector model from disk
#     prototxtPath = os.path.sep.join([face_path, "deploy.prototxt"])
#     weightsPath = os.path.sep.join([face_path, "res10_300x300_ssd_iter_140000.caffemodel"])
#     net = cv2.dnn.readNet(prototxtPath, weightsPath)
#     print("STARTED")
#     # If video is a FileStorage object, save it to a temporary file
#     if isinstance(video, FileStorage):
#         video_path = "temp_video.mp4"
#         video.save(video_path)
#     else:
#         video_path = video  # Assume it's already a file path

#     # Initialize the video stream
#     vs = cv2.VideoCapture(video_path)

#     # Define the codec and create a VideoWriter object
#     fourcc = cv2.VideoWriter_fourcc(*"mp4v")
#     out = cv2.VideoWriter(output_path, fourcc, 20.0, (int(vs.get(3)), int(vs.get(4))))

#     while True:
#         # Grab the frame from the video stream
#         (grabbed, frame) = vs.read()

#         # If the frame was not grabbed, we have reached the end of the stream
#         if not grabbed:
#             break

#         # Detect faces in the frame
#         detect_and_draw(frame, net, size, confidence)

#         # Write the output frame to the video file
#         out.write(frame)

#     # Release the video stream and close any open windows
#     vs.release()
#     out.release()
#     cv2.destroyAllWindows()

#     # If a temporary video file was created, remove it
#     if isinstance(video, FileStorage):
#         os.remove(video_path)

# def detect_and_draw(frame, net, size, confidence):
#     (h, w) = frame.shape[:2]
#     blob = cv2.dnn.blobFromImage(frame, scalefactor=1.0, mean=(104.0, 177.0, 123.0))

#     net.setInput(blob)
#     detections = net.forward()

#     for i in range(0, detections.shape[2]):
#         conf = detections[0, 0, i, 2]
#         if conf < confidence:
#             # Drop low confidence detections
#             continue

#         box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
#         (startX, startY, endX, endY) = box.astype("int")
#         (startX, startY) = (max(0, startX), max(0, startY))
#         (endX, endY) = (min(w - 1, endX), min(h - 1, endY))

#         # Draw a dark pink solid rectangle around the detected face
#         frame[startY:endY, startX:endX, :] = (136, 28, 238)