|
''' |
|
MIT license https://opensource.org/licenses/MIT Copyright 2024 Infosys Ltd |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
''' |
|
|
|
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input |
|
from tensorflow.keras.preprocessing.image import img_to_array |
|
from tensorflow.keras.models import load_model |
|
from privacy.config.logger import CustomLogger |
|
import numpy as np |
|
import argparse |
|
import cv2 |
|
import os |
|
|
|
import argparse |
|
import random |
|
import os |
|
|
|
from tqdm import tqdm |
|
log= CustomLogger() |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-d', '--data-dir', default='data/dataset_raw', |
|
help="Directory with the raw dataset") |
|
parser.add_argument('-o', '--output-dir', default='data/64x64_dataset', |
|
help="Where to write the new data") |
|
parser.add_argument('-s', '--size', type=int, default=64, |
|
help="Where to write the new data") |
|
parser.add_argument('-c', '--confidence', type=float, default=0.5, |
|
help="Confidence threshold to detect face") |
|
parser.add_argument('--face-model', type=str, default="face_detector", |
|
help="path to face detector model directory") |
|
|
|
def extract_face(filename, output_dir, net, size, confidence_threshold): |
|
image = cv2.imread(filename) |
|
if image is None: |
|
return |
|
|
|
filename_out = filename.split('/')[-1].split('.')[0] |
|
(h, w) = image.shape[:2] |
|
|
|
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(128, 128), mean=(104.0, 177.0, 123.0)) |
|
net.setInput(blob) |
|
detections = net.forward() |
|
|
|
for i in range(0, detections.shape[2]): |
|
confidence = detections[0, 0, i, 2] |
|
if confidence > confidence_threshold: |
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(startX, startY, endX, endY) = box.astype("int") |
|
(startX, startY) = (max(0, startX), max(0, startY)) |
|
(endX, endY) = (min(w - 1, endX), min(h - 1, endY)) |
|
|
|
try: |
|
frame = image[startY:endY, startX:endX] |
|
frame = cv2.resize(frame, (size, size), interpolation=cv2.INTER_AREA) |
|
if i > 0: |
|
image_out = os.path.join(output_dir, '%s_%s.jpg' % (filename_out, i)) |
|
else: |
|
image_out = os.path.join(output_dir, '%s.jpg' % filename_out) |
|
cv2.imwrite(image_out, frame) |
|
except Exception as e: |
|
log.error(str(e)) |
|
log.error("Line No:"+str(e.__traceback__.tb_lineno)) |
|
|
|
def app(): |
|
args = parser.parse_args() |
|
|
|
assert os.path.isdir(args.data_dir), "Couldn't find the dataset at {}".format(args.data_dir) |
|
|
|
prototxtPath = os.path.join(args.face_model, "deploy.prototxt") |
|
weightsPath = os.path.join(args.face_model, "res10_300x300_ssd_iter_140000.caffemodel") |
|
net = cv2.dnn.readNet(prototxtPath, weightsPath) |
|
|
|
|
|
train_mask_dir = os.path.join(args.data_dir, 'train/Mask') |
|
train_non_mask_dir = os.path.join(args.data_dir, 'train/Non Mask') |
|
os.makedirs(train_mask_dir, exist_ok=True) |
|
os.makedirs(train_non_mask_dir, exist_ok=True) |
|
|
|
test_mask_dir = os.path.join(args.data_dir, 'test/Mask') |
|
test_non_mask_dir = os.path.join(args.data_dir, 'test/Non Mask') |
|
os.makedirs(test_mask_dir, exist_ok=True) |
|
os.makedirs(test_non_mask_dir, exist_ok=True) |
|
|
|
|
|
filenames_mask = os.listdir(train_mask_dir) |
|
filenames_mask = [os.path.join(train_mask_dir, f) for f in filenames_mask if f.endswith('.jpg')] |
|
|
|
filenames_non_mask = os.listdir(train_non_mask_dir) |
|
filenames_non_mask = [os.path.join(train_non_mask_dir, f) for f in filenames_non_mask if f.endswith('.jpg')] |
|
|
|
test_filenames_mask = os.listdir(test_mask_dir) |
|
test_filenames_mask = [os.path.join(test_mask_dir, f) for f in test_filenames_mask if f.endswith('.jpg')] |
|
|
|
test_filenames_non_mask = os.listdir(test_non_mask_dir) |
|
test_filenames_non_mask = [os.path.join(test_non_mask_dir, f) for f in test_filenames_non_mask if f.endswith('.jpg')] |
|
|
|
|
|
|
|
filenames_mask.sort() |
|
filenames_non_mask.sort() |
|
random.shuffle(filenames_mask) |
|
random.shuffle(filenames_non_mask) |
|
|
|
split_mask = int(0.8 * len(filenames_mask)) |
|
train_filenames_mask = filenames_mask[:split_mask] |
|
dev_filenames_mask = filenames_mask[split_mask:] |
|
|
|
split_non_mask = int(0.8 * len(filenames_non_mask)) |
|
train_filenames_non_mask = filenames_non_mask[:split_non_mask] |
|
dev_filenames_non_mask = filenames_non_mask[split_non_mask:] |
|
|
|
filenames = {'train/Mask': train_filenames_mask, |
|
'train/Non Mask': train_filenames_non_mask, |
|
'test/Mask': test_filenames_mask, |
|
'test/Non Mask': test_filenames_non_mask, |
|
'validation/Mask': dev_filenames_mask, |
|
'validation/Non Mask': dev_filenames_non_mask} |
|
|
|
|
|
for split in filenames.keys(): |
|
output_dir_split = os.path.join(args.output_dir, split) |
|
os.makedirs(output_dir_split, exist_ok=True) |
|
|
|
print("Processing {} data, saving preprocessed data to {}".format(split, output_dir_split)) |
|
for filename in tqdm(filenames[split]): |
|
extract_face(filename, output_dir_split, net, args.size, args.confidence) |
|
|
|
print("Done building dataset") |
|
|
|
|
|
if __name__ == '__main__': |
|
app() |
|
|