--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-mrpc results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - type: accuracy value: 0.8602941176470589 name: Accuracy - type: f1 value: 0.9042016806722689 name: F1 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - type: accuracy value: 0.8602941176470589 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMzOWFiNmZjY2ZjMzYzYjk2YjA2ZTc0NjBmYmRlMWM4YWQwMzczYmU0NjcxNjU4YWNhMGMxMjQxNmEwNzM3NSIsInZlcnNpb24iOjF9.5c8Um2j-oDEviTR2S_mlrjQU2Z5zEIgoEldxU6NpIGkM22WhGRMmuCUlkPEpy1q2-HsA4Lz16SAF2bXOXZMqBw - type: precision value: 0.8512658227848101 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzA0MjM4OGYyYmNhYTU3OTBmNzE3YzViNzQyZTk2NmJiODE2NGJkZGVlMTYxZGQzOWE1YTRkZjZmNjI5ODljNyIsInZlcnNpb24iOjF9.mzDbq7IbSFWnlR6jV-KwuNhOrqnuZVVQX38UzQVClox6O1DRmxAFuo3wmSYBEEaydGipdDN1FAkLXDyZP4LFBg - type: recall value: 0.96415770609319 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDMxMzUyZDVhNGM0ZTk3NjUxYTVlYmRjYjMxZTY3NjEzZmU5YzA5NTRmZTM3YTU1MjE3MzBmYjA1NzhkNjJlYSIsInZlcnNpb24iOjF9.WxpDTp5ANy97jjbzn4BOeQc5A5JJsyK2NQDv651v7J8AHrt_Srvy5lVia_gyWgqt4bI-ZpPPmBCCCP9MdOhdBw - type: auc value: 0.8985718651885194 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWE3ZDc1ZWMwY2RmZmM4ZjQyY2RiMGJjMzFmNmNjNzVmMzE4Y2FlMzJjNzk0MTI3YjdkMTY5ZDg3ZGZjMGFkNSIsInZlcnNpb24iOjF9.PiS1glSDlAM9r7Pvu0FdTCdx45Dr_IDe7TRuZD8QhJzKw__H-Lil5bkBW-FsoN6hKQe80-qtuhLhvLwlZPORCA - type: f1 value: 0.9042016806722689 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2FiOTY2MDI1ZDcyYjE3OGVjOGJjOTc3NGRiODgwNzQxNTEzOGM4YTJhMDE0NjRlNjg1ODk0YzM5YTY0NTQxYSIsInZlcnNpb24iOjF9.gz3szT-MroNcsPhMznhg0kwgWsIa1gfJi8vrhcFMD0PK6djlvZIVKoAS2QE-1cgqPMph7AJXTLifQuPgPBQLDA - type: loss value: 0.6978028416633606 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDZjODM1NGYyZWMyNDQxOTg0ODkxODgyODcxMzRlZTVjMTc5YjU3MDJmMGMzYzczZDU1Y2NjNTYwYjM2MDEzZiIsInZlcnNpb24iOjF9.eNSy3R0flowu2c4OEAv9rayTQI4YluNN-AuXKzBJM6KPASzuVOD6vTElHMptXiJWc-2tfHJw6CdvyAQSEGTaBg --- # bert-base-uncased-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.8603 - F1: 0.9042 - Combined Score: 0.8822 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.11.6