--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8602941176470589 - name: F1 type: f1 value: 0.9042016806722689 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - name: Accuracy type: accuracy value: 0.8602941176470589 verified: true - name: Precision type: precision value: 0.8512658227848101 verified: true - name: Recall type: recall value: 0.96415770609319 verified: true - name: AUC type: auc value: 0.8985718651885194 verified: true - name: F1 type: f1 value: 0.9042016806722689 verified: true - name: loss type: loss value: 0.6978028416633606 verified: true --- # bert-base-uncased-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.8603 - F1: 0.9042 - Combined Score: 0.8822 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.11.6