--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: camembert-base-mrpc results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - type: accuracy value: 0.8504901960784313 name: Accuracy - type: f1 value: 0.8927943760984183 name: F1 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - type: accuracy value: 0.8504901960784313 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJjOGZiMzBlNjhhNTZlMjEzNTE5MDM2OTJmYzZhZTE2YzE0MWM0ZmY2Zjk5ZTkxYWE0NTEyMDVlMDI5N2MwZiIsInZlcnNpb24iOjF9.dLsmgphn4jg1LbcOwDagIBRtQJ3spLTOcPxOpVnNqE-oU6ttKxW-Ypg7arQxOV-swVu4xpl3SDGaqEDE5sZnCw - type: precision value: 0.8758620689655172 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2ZiY2ZiODZmOTJkN2I4YzYxY2NmMDc1NzQyMmI0MTI0MDlmYzkzNDhjMTA4NmIzNzNjNjE4NmMwMjI1MDRjMyIsInZlcnNpb24iOjF9.94XqLpsB43QQqsnh5ykt_jZuKXOjSbtwFgEUscatZzJdwIt0WBHY7oNpoodbZbk0eUDzTIoZyNoN59glXmlEAg - type: recall value: 0.910394265232975 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTY3MDljNGM4ZjYxZjc1YmYyZTkwNjc4MTRmOTFjZjYyZDdlY2EyZTc4OWE0NWQ3ODIxY2NmODIzY2IxMWY5YiIsInZlcnNpb24iOjF9.BGacWdlFR1hw98mwV6P1UPbBInb4Z8XIpRkqqZdeQPpH9RBBdGoaiKuKx7FJKGDgMLEaqwleER4n6FSC7KaQDg - type: auc value: 0.9029062821260871 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDU0ZjdjZGNjNjAxZWM3NzNlYmM2NWFlZmYwZTY5ZDI2ZTY2ZTk0YTVhODc0NzcyMjNjOGFjOTY0YjYzMmU2ZCIsInZlcnNpb24iOjF9.jalnocWEmIaPkl1l-kHZm9I49WumqCay5T5C3_5RKhPZMCidPIRB14Y7a6klepf19-__EmP34QS3HxEl5iVMBA - type: f1 value: 0.8927943760984183 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2I1MGVmODRlYTNjZTJmYWRiYTA5YzEyODkxYjQ2ZGNlMTliODAwMzMwNGEzMWQ2ZGRhYmYwZjVjMTgwNGU2NCIsInZlcnNpb24iOjF9.QgvEjsEulus1kvcBkHqV3RrcigOSNcfCbkKa6JWPCRxIyzbiFpNCvkFubSHbVPe0SX2h9vjgjmECv-SapMLKDg - type: loss value: 0.42868512868881226 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjIwMjNiYzI4NzgwZGI5MWU2NDgzYTQzNTYwNGUwMmZlNmViODhhYWIzZGE1ZWIxYzExMzRiOTU1YzFhNWQ0OSIsInZlcnNpb24iOjF9.NUgxlMh9Z0EyRqeKRr3BYYk9L02EdmJM-alLPPecPkML_ZdcbWHW-JOQN_vUTgYNda80dUBKRj_FmJ4kRF4yAQ --- # camembert-base-mrpc This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4286 - Accuracy: 0.8505 - F1: 0.8928 - Combined Score: 0.8716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6