--- language: - en license: apache-2.0 tags: - token-classfication - int8 - IntelĀ® Neural Compressor - PostTrainingStatic datasets: - conll2003 metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-conll03-english-int8-static results: - task: name: Token Classification type: token-classification dataset: name: Conll2003 type: conll2003 metrics: - name: Accuracy type: accuracy value: 0.9858650364082395 --- # INT8 distilbert-base-uncased-finetuned-conll03-english ### Post-training static quantization This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [IntelĀ® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [elastic/distilbert-base-uncased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-uncased-finetuned-conll03-english). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-accuracy)** |0.9859|0.9882| | **Model size (MB)** |64.5|253| ### Load with optimum: ```python from optimum.intel import INCModelForTokenClassification model_id = "Intel/distilbert-base-uncased-finetuned-conll03-english-int8-static" int8_model = INCModelForTokenClassification.from_pretrained(model_id) ```