--- license: apache-2.0 tags: - int8 - Intel® Neural Compressor - PostTrainingStatic datasets: - imagenet-1k metrics: - accuracy --- # The INT8 model based on vit-base-patch16-224 which finetuned on imagenet-1k ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). The calibration dataloader is the train dataloader. The default calibration sampling size 1000 because of 1000 classes of imagenet-1k. The linear modules **vit.encoder.layer.5.output.dense**, **vit.encoder.layer.9.attention.attention.query.module**, fall back to fp32 for less than 1% relative accuracy loss. ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-acc)** |80.576|81.326| | **Model size (MB)** |94|331| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/vit-base-patch16-224-int8-static', ) ```