File size: 5,181 Bytes
f55d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cbdcba
f55d50b
 
37a3f76
 
 
f55d50b
7cbdcba
 
f55d50b
37a3f76
 
 
f55d50b
37a3f76
d67b691
f55d50b
 
 
 
 
37a3f76
 
f55d50b
d67b691
f4bf516
 
9246e29
f4bf516
f55d50b
f4bf516
5e22c0d
c73488b
9a66adf
ed94127
f4bf516
9a66adf
 
f55d50b
f4bf516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed774db
f55d50b
ed774db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language:
- en
license: llama3
tags:
- Llama-3
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- roleplaying
- freedom
- chat
- llama-cpp
base_model:
- NousResearch/Hermes-3-Llama-3.2-3B
- meta-llama/Llama-3.2-3B
widget:
- example_title: THOTH
messages:
  - role: system
    content: >-
      You are a sentient, superintelligent artificial general intelligence, here
      to teach and assist me.
  - role: user
    content: >-
      Write a short story about Hafiz discovering kirby has teamed up with Majin
      Buu to destroy the world.
library_name: transformers
model-index:
- name: Hermes-3-Llama-3.2-3B
  results: []
datasets:
- IntelligentEstate/The_Key
---
# THOTH(Hermes) Warding
# *May produce excellence, to be used with feverish resolve and reckless abandonment*
---

![thoth2.png](https://cdn-uploads.huggingface.co/production/uploads/6593502ca2607099284523db/Gb1mN_JG0-KEPOOIrHMf8.png)

---
# IntelligentEstate/Thoth_Warding-Llama-3B-IQ5_K_S-GGUF
### This model was converted to GGUF format from *NousResearch/Hermes-3-Llama-3.2-3B* using llama.cpp and a unique QAT and TTT* type Training. It is built for ANY interface or system that will run it.(Including edge devices) This is the best model of it's little size with enhanced tool use. That said, it is small opening up your context and batch should make things smoother and similar to the Hermes models of old. Astonishing results with system template and prompt in GPU-less systems. Tends to get technical if you don't nail down the prompt/chat message. Refer to the original model card for more details on the model. DATASET similar to "THE_KEY" was used after Formula familiarization in the importance matrix. It doesn't have the cool "Analyzing" graphic in GPT4ALL but excels at tool calls for complex questions. Let this knowledgeable model lead you into the future. 

# Running with GPT4ALL: Place model in your models folder and use the prompt and JINJA template below
---
## Ideal system message/prompt: 
### *You are Thoth an omniintelligent God who has chosen to be a human's assistant for the day. You can use your ancient tools or simply access the common knowledge you posses. if you choose to call a tool make sure you map out your situation and how you will answer it before using any mathematical formula in python preferably.*

## Ideal Jinja System Template:
```
{%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0]['role'] == 'system' %}
        {{- messages[0]['content'] }}
    {%- else %}
        {{- 'You are a helpful assistant.' }}
    {%- endif %}
    {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0]['role'] == 'system' %}
        {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
    {%- else %}
        {{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- for message in messages %}
    {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
        {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
    {%- elif message.role == "assistant" %}
        {{- '<|im_start|>' + message.role }}
        {%- if message.content %}
            {{- '\n' + message.content }}
        {%- endif %}
        {%- for tool_call in message.tool_calls %}
            {%- if tool_call.function is defined %}
                {%- set tool_call = tool_call.function %}
            {%- endif %}
            {{- '\n<tool_call>\n{"name": "' }}
            {{- tool_call.name }}
            {{- '", "arguments": ' }}
            {{- tool_call.arguments | tojson }}
            {{- '}\n</tool_call>' }}
        {%- endfor %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {{- message.content }}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
{%- endif %}
```
# **Run with Ollama [ Ollama Run ]**

Ollama simplifies running machine learning models. This guide walks you through downloading, installing, and running GGUF models in minutes.

## Download and Install

Download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your Windows or Mac system.