IrinaArcadievna
commited on
Commit
•
0f33021
1
Parent(s):
ae79949
Initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sac-PandaPickAndPlace-v3.zip +3 -0
- sac-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- sac-PandaPickAndPlace-v3/actor.optimizer.pth +3 -0
- sac-PandaPickAndPlace-v3/critic.optimizer.pth +3 -0
- sac-PandaPickAndPlace-v3/data +114 -0
- sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth +3 -0
- sac-PandaPickAndPlace-v3/policy.pth +3 -0
- sac-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- sac-PandaPickAndPlace-v3/system_info.txt +9 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x79a936caacb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a936cb6600>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706890694716402079, "learning_rate": 0.01, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAERNhPzJZoz/sYmc9NQAlPm/6Uj3lUWc90K5CvyA1HD9KOmc9tCqFvvUFlL7lUWc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmRnkvq+yCL/jdQu/yabkPpC1qr9kH4m/Bro7v0flmL/B/jo+he/JvwptMz1bbJ0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvLrw+KNyOv5QZZj+tdt28xsvKvh1QG77YkxO/ERNhPzJZoz/sYmc91j3but2kK7w5SEa8lv6RPPTZdDvKcNU8HpiEO9ZxHbt8uoq6VDoPP0R3ar/dcmY/fwPDPqRmv7uj2Z+9cpQTvzUAJT5v+lI95VFnPTSX2rpUKR68T0c4vM0ZiTzvPoY7d+XYPOOKnjpuJQS8TPuCumhUWD+egDa/eRwHPwHwkz4/kiy+xCuzu/GUE7/QrkK/IDUcP0o6Zz1MQY66q88kvK52NrxVl4Q8D8KMO3fl2Dzoip46byUEvOd+h7pRKTg/XtQ7vyH+VD/uOuY9Qb3LvkAXy7zxlBO/tCqFvvUFlL7lUWc9M5faulUpHrw14zW8zxmJPOI+hjt35dg844qeOm4lBLxv+oK6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.8791972 1.2761595 0.05649082]\n [ 0.1611336 0.05150836 0.05647459]\n [-0.7604799 0.6101856 0.05645207]\n [-0.26009142 -0.28910795 0.05647459]]", "desired_goal": "[[-0.4455078 -0.5339765 -0.54476756]\n [ 0.44658497 -1.3336658 -1.0712705 ]\n [-0.73330724 -1.194497 0.18261243]\n [-1.577622 0.04380516 1.2298692 ]]", "observation": "[[ 3.67541760e-01 -1.11609364e+00 8.98827791e-01 -2.70341281e-02\n -3.96085918e-01 -1.51672795e-01 -5.76474667e-01 8.79197180e-01\n 1.27615952e+00 5.64908236e-02 -1.67268026e-03 -1.04763182e-02\n -1.21021802e-02 1.78215913e-02 3.73613555e-03 2.60547586e-02\n 4.04645409e-03 -2.40241503e-03 -1.05841411e-03]\n [ 5.59483767e-01 -9.15882349e-01 9.00190175e-01 3.80886048e-01\n -5.84109314e-03 -7.80518278e-02 -5.76483846e-01 1.61133602e-01\n 5.15083633e-02 5.64745851e-02 -1.66771421e-03 -9.65340808e-03\n -1.12474700e-02 1.67359356e-02 4.09685774e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99310520e-04]\n [ 8.45037937e-01 -7.12900043e-01 5.27778208e-01 2.88940459e-01\n -1.68526635e-01 -5.46786375e-03 -5.76491416e-01 -7.60479927e-01\n 6.10185623e-01 5.64520732e-02 -1.08532002e-03 -1.00592775e-02\n -1.11366939e-02 1.61854420e-02 4.29559452e-03 2.64766049e-02\n 1.20958406e-03 -8.06556549e-03 -1.03375025e-03]\n [ 7.19380438e-01 -7.33709216e-01 8.32002699e-01 1.12417087e-01\n -3.97928268e-01 -2.47913599e-02 -5.76491416e-01 -2.60091424e-01\n -2.89107949e-01 5.64745851e-02 -1.66771410e-03 -9.65340901e-03\n -1.11015337e-02 1.67359393e-02 4.09685168e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99284792e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7AelPWwg+T2TwaM8t2piPKwCoTvWwKM8cy+TvZc+bj3Qv6M8cp7PvKm24bzWwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ4EivZtyQL0zLWE9feIbPdoi7r0K16M8O5yEvXhw1b2Ci9M9sqMNvlDiSTt7AjE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACnBUm9s3zuvvqh7j6QhwS+l2oivg/oHrxKVWs17AelPWwg+T2TwaM8tRirthbHnrehVqi5sI4vOJAu4LezeKi3rmucOsJ19jpuRQ+5SbWoO/wtyb6ox+4+k6WkvGTjjrwGCoA8fcUeNbdqYjysAqE71sCjPNWYlrY81hk4j53yuCotMTWKwje3OHiMrN8ok66+coovULLKuC/Drz0UW6O+lovGPrpBN70pP5y9700mPdeBvjRzL5O9lz5uPdC/ozw/2Iw4WzobN+7Jurg3sam3XOoXtsCGUKwS2kwv52BbLruN+7j2HU49vjunvr9p5z6KhLy9TBkjvuoSCz0nY780cp7PvKm24bzWwKM8n5iWtiPWGTjhEam49TcxNbjDN7ew04ysskyUrrhoii/xqMq4lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.08058152 0.12164387 0.01998976]\n [ 0.01381939 0.00491365 0.01998941]\n [-0.07186785 0.05816516 0.01998892]\n [-0.02534411 -0.02755292 0.01998941]]", "desired_goal": "[[-0.03967395 -0.0469843 0.05497475]\n [ 0.03805779 -0.11627741 0.02 ]\n [-0.06475111 -0.10421842 0.10329343]\n [-0.13831976 0.00308051 0.17286102]]", "observation": "[[-4.9077656e-02 -4.6579513e-01 4.6607953e-01 -1.2942338e-01\n -1.5860973e-01 -9.6988818e-03 8.7668434e-07 8.0581516e-02\n 1.2164387e-01 1.9989764e-02 -5.0990734e-06 -1.8927774e-05\n -3.2108001e-04 4.1856139e-05 -2.6724563e-05 -2.0083366e-05\n 1.1933947e-03 1.8803405e-03 -1.3663407e-04]\n [ 5.1485640e-03 -3.9292896e-01 4.6636701e-01 -2.0098483e-02\n -1.7442413e-02 1.5629780e-02 5.9146970e-07 1.3819388e-02\n 4.9136486e-03 1.9989412e-02 -4.4881403e-06 3.6677564e-05\n -1.1568807e-04 6.6003361e-07 -1.0952945e-05 -3.9923863e-12\n -6.6920462e-11 2.5183583e-10 -9.6653239e-05]\n [ 8.5821502e-02 -3.1905425e-01 3.8778371e-01 -4.4740416e-02\n -7.6292343e-02 4.0601667e-02 3.5484729e-07 -7.1867846e-02\n 5.8165159e-02 1.9988924e-02 6.7159992e-05 9.2523069e-06\n -8.9067835e-05 -2.0228892e-05 -2.2637169e-06 -2.9633379e-12\n 1.8631166e-10 4.9880901e-11 -1.1995012e-04]\n [ 5.0321542e-02 -3.2662767e-01 4.5197865e-01 -9.2049673e-02\n -1.5927619e-01 3.3953585e-02 3.5648665e-07 -2.5344107e-02\n -2.7552919e-02 1.9989412e-02 -4.4881158e-06 3.6677473e-05\n -8.0618782e-05 6.6019066e-07 -1.0953219e-05 -4.0025414e-12\n -6.7438846e-11 2.5176461e-10 -9.6635784e-05]]"}, "_episode_num": 10319, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnudRLCemOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuh+chC+ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvAy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu/9L6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvCztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvHYuK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvl17x/d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvlK5kK/mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvoNFBppOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtMZpBX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwLB4MWoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwKGPPszEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwNYHHFP0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSCY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwwmJFb3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwvxesxO+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnwwhZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwzt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw4PvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXXyZrpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXReTmnwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxZqoAGSqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeJvxYq5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9NHQQcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9oBaLXMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyAOg6EJ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyEuJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnysUx20RfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnytNw71ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyz2hIvrXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny5GsvIwNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzgB2OhkBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnzf8XvYvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnziglfJFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnznGKhtcfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnzn1YhdMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GXj+717dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GewTufFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0IbbL2YfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0NmHYYixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0r/MnqmkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sGjCYTkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn0s6i0v4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0uzjNpuddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn00CiRGMGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1S8YqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1T00Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1VwIUrTZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1bB8QZn+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn142f029+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15i3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn170x/NJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BM2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2gf1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2hJmmLtNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2i7bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2oQHRkVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3G9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3IRwyZa3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn3JIT4+KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Jy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3PPXK8tgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3tc580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3uwl0HQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3vsmWt2cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn31Ku8scydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TRrSE13dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4WUEovzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4bYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4hwzk6tDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5KehXbM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5OnsTnJUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn5P3EqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5SA/C66KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5XSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn51nEdeY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54ArH2h7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54WIGhVVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn55NPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn59uLJjlQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6b8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6etHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6f5Wq95AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kfoicG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7ClRHf/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7FdLxqfwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7GuZkTYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LMRQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7okIomXxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7r0u+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7smff4yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7xHWrfcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8PjUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8RsqBmPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8S8Vgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8XXwTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn81+d9UjtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn84fGMn7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn85WPkq+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn890snRb9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 124975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x79a936ea2b90>", "add": "<function DictReplayBuffer.add at 0x79a936ea2c20>", "sample": "<function DictReplayBuffer.sample at 0x79a936ea2cb0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x79a936ea2d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a936e9eb40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVUQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oRCQ1g5UeR8yIYET1tpw7i4wCMA2luY5SKEQX8OuzynWMHH6ilp1cgvaEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (736 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-02T17:13:18.391641"}
|
sac-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f97bf12832663f0d60d9482404c857f93a1c482676e2d44951707cb53384f40
|
3 |
+
size 3305915
|
sac-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.2.1
|
sac-PandaPickAndPlace-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26fd8eae8e7c430a464db9981e23e20dfb5c67e97376748a6ec5ab3a7c0aeac9
|
3 |
+
size 602958
|
sac-PandaPickAndPlace-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:072dc2599d7b22bc637ac27a54e6b7dc4b71486e78b26719f4d6a71865cb2166
|
3 |
+
size 1189802
|
sac-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x79a936caacb0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79a936cb6600>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"use_sde": false
|
14 |
+
},
|
15 |
+
"num_timesteps": 500000,
|
16 |
+
"_total_timesteps": 500000,
|
17 |
+
"_num_timesteps_at_start": 0,
|
18 |
+
"seed": null,
|
19 |
+
"action_noise": null,
|
20 |
+
"start_time": 1706890694716402079,
|
21 |
+
"learning_rate": 0.01,
|
22 |
+
"tensorboard_log": null,
|
23 |
+
"_last_obs": {
|
24 |
+
":type:": "<class 'collections.OrderedDict'>",
|
25 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAERNhPzJZoz/sYmc9NQAlPm/6Uj3lUWc90K5CvyA1HD9KOmc9tCqFvvUFlL7lUWc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmRnkvq+yCL/jdQu/yabkPpC1qr9kH4m/Bro7v0flmL/B/jo+he/JvwptMz1bbJ0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABvLrw+KNyOv5QZZj+tdt28xsvKvh1QG77YkxO/ERNhPzJZoz/sYmc91j3but2kK7w5SEa8lv6RPPTZdDvKcNU8HpiEO9ZxHbt8uoq6VDoPP0R3ar/dcmY/fwPDPqRmv7uj2Z+9cpQTvzUAJT5v+lI95VFnPTSX2rpUKR68T0c4vM0ZiTzvPoY7d+XYPOOKnjpuJQS8TPuCumhUWD+egDa/eRwHPwHwkz4/kiy+xCuzu/GUE7/QrkK/IDUcP0o6Zz1MQY66q88kvK52NrxVl4Q8D8KMO3fl2Dzoip46byUEvOd+h7pRKTg/XtQ7vyH+VD/uOuY9Qb3LvkAXy7zxlBO/tCqFvvUFlL7lUWc9M5faulUpHrw14zW8zxmJPOI+hjt35dg844qeOm4lBLxv+oK6lGgOSwRLE4aUaBJ0lFKUdS4=",
|
26 |
+
"achieved_goal": "[[ 0.8791972 1.2761595 0.05649082]\n [ 0.1611336 0.05150836 0.05647459]\n [-0.7604799 0.6101856 0.05645207]\n [-0.26009142 -0.28910795 0.05647459]]",
|
27 |
+
"desired_goal": "[[-0.4455078 -0.5339765 -0.54476756]\n [ 0.44658497 -1.3336658 -1.0712705 ]\n [-0.73330724 -1.194497 0.18261243]\n [-1.577622 0.04380516 1.2298692 ]]",
|
28 |
+
"observation": "[[ 3.67541760e-01 -1.11609364e+00 8.98827791e-01 -2.70341281e-02\n -3.96085918e-01 -1.51672795e-01 -5.76474667e-01 8.79197180e-01\n 1.27615952e+00 5.64908236e-02 -1.67268026e-03 -1.04763182e-02\n -1.21021802e-02 1.78215913e-02 3.73613555e-03 2.60547586e-02\n 4.04645409e-03 -2.40241503e-03 -1.05841411e-03]\n [ 5.59483767e-01 -9.15882349e-01 9.00190175e-01 3.80886048e-01\n -5.84109314e-03 -7.80518278e-02 -5.76483846e-01 1.61133602e-01\n 5.15083633e-02 5.64745851e-02 -1.66771421e-03 -9.65340808e-03\n -1.12474700e-02 1.67359356e-02 4.09685774e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99310520e-04]\n [ 8.45037937e-01 -7.12900043e-01 5.27778208e-01 2.88940459e-01\n -1.68526635e-01 -5.46786375e-03 -5.76491416e-01 -7.60479927e-01\n 6.10185623e-01 5.64520732e-02 -1.08532002e-03 -1.00592775e-02\n -1.11366939e-02 1.61854420e-02 4.29559452e-03 2.64766049e-02\n 1.20958406e-03 -8.06556549e-03 -1.03375025e-03]\n [ 7.19380438e-01 -7.33709216e-01 8.32002699e-01 1.12417087e-01\n -3.97928268e-01 -2.47913599e-02 -5.76491416e-01 -2.60091424e-01\n -2.89107949e-01 5.64745851e-02 -1.66771410e-03 -9.65340901e-03\n -1.11015337e-02 1.67359393e-02 4.09685168e-03 2.64766049e-02\n 1.20958348e-03 -8.06556456e-03 -9.99284792e-04]]"
|
29 |
+
},
|
30 |
+
"_last_episode_starts": {
|
31 |
+
":type:": "<class 'numpy.ndarray'>",
|
32 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
33 |
+
},
|
34 |
+
"_last_original_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7AelPWwg+T2TwaM8t2piPKwCoTvWwKM8cy+TvZc+bj3Qv6M8cp7PvKm24bzWwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ4EivZtyQL0zLWE9feIbPdoi7r0K16M8O5yEvXhw1b2Ci9M9sqMNvlDiSTt7AjE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACnBUm9s3zuvvqh7j6QhwS+l2oivg/oHrxKVWs17AelPWwg+T2TwaM8tRirthbHnrehVqi5sI4vOJAu4LezeKi3rmucOsJ19jpuRQ+5SbWoO/wtyb6ox+4+k6WkvGTjjrwGCoA8fcUeNbdqYjysAqE71sCjPNWYlrY81hk4j53yuCotMTWKwje3OHiMrN8ok66+coovULLKuC/Drz0UW6O+lovGPrpBN70pP5y9700mPdeBvjRzL5O9lz5uPdC/ozw/2Iw4WzobN+7Jurg3sam3XOoXtsCGUKwS2kwv52BbLruN+7j2HU49vjunvr9p5z6KhLy9TBkjvuoSCz0nY780cp7PvKm24bzWwKM8n5iWtiPWGTjhEam49TcxNbjDN7ew04ysskyUrrhoii/xqMq4lGgOSwRLE4aUaBJ0lFKUdS4=",
|
37 |
+
"achieved_goal": "[[ 0.08058152 0.12164387 0.01998976]\n [ 0.01381939 0.00491365 0.01998941]\n [-0.07186785 0.05816516 0.01998892]\n [-0.02534411 -0.02755292 0.01998941]]",
|
38 |
+
"desired_goal": "[[-0.03967395 -0.0469843 0.05497475]\n [ 0.03805779 -0.11627741 0.02 ]\n [-0.06475111 -0.10421842 0.10329343]\n [-0.13831976 0.00308051 0.17286102]]",
|
39 |
+
"observation": "[[-4.9077656e-02 -4.6579513e-01 4.6607953e-01 -1.2942338e-01\n -1.5860973e-01 -9.6988818e-03 8.7668434e-07 8.0581516e-02\n 1.2164387e-01 1.9989764e-02 -5.0990734e-06 -1.8927774e-05\n -3.2108001e-04 4.1856139e-05 -2.6724563e-05 -2.0083366e-05\n 1.1933947e-03 1.8803405e-03 -1.3663407e-04]\n [ 5.1485640e-03 -3.9292896e-01 4.6636701e-01 -2.0098483e-02\n -1.7442413e-02 1.5629780e-02 5.9146970e-07 1.3819388e-02\n 4.9136486e-03 1.9989412e-02 -4.4881403e-06 3.6677564e-05\n -1.1568807e-04 6.6003361e-07 -1.0952945e-05 -3.9923863e-12\n -6.6920462e-11 2.5183583e-10 -9.6653239e-05]\n [ 8.5821502e-02 -3.1905425e-01 3.8778371e-01 -4.4740416e-02\n -7.6292343e-02 4.0601667e-02 3.5484729e-07 -7.1867846e-02\n 5.8165159e-02 1.9988924e-02 6.7159992e-05 9.2523069e-06\n -8.9067835e-05 -2.0228892e-05 -2.2637169e-06 -2.9633379e-12\n 1.8631166e-10 4.9880901e-11 -1.1995012e-04]\n [ 5.0321542e-02 -3.2662767e-01 4.5197865e-01 -9.2049673e-02\n -1.5927619e-01 3.3953585e-02 3.5648665e-07 -2.5344107e-02\n -2.7552919e-02 1.9989412e-02 -4.4881158e-06 3.6677473e-05\n -8.0618782e-05 6.6019066e-07 -1.0953219e-05 -4.0025414e-12\n -6.7438846e-11 2.5176461e-10 -9.6635784e-05]]"
|
40 |
+
},
|
41 |
+
"_episode_num": 10319,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.0,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnudRLCemOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuh+chC+ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvAy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu/9L6DXfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvCztkWhzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvHYuK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvl17x/d7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvlK5kK/mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvoNFBppOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtMZpBX0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwLB4MWoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwKGPPszEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwNYHHFP0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSCY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwwmJFb3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwvxesxO+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnwwhZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwzt29tdidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw4PvjOs1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXXyZrpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXReTmnwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxZqoAGSqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeJvxYq5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9NHQQcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx9oBaLXMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyAOg6EJ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyEuJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnysUx20RfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnytNw71ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyz2hIvrXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny5GsvIwNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzgB2OhkBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnzf8XvYvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnziglfJFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnznGKhtcfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnzn1YhdMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GXj+717dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0GewTufFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0IbbL2YfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0NmHYYixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0r/MnqmkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sGjCYTkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn0s6i0v4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0uzjNpuddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn00CiRGMGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1S8YqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1T00Nz8xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1VwIUrTZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1bB8QZn+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn142f029+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15i3XqZ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn170x/NJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BM2vStvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2gf1HvtudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2hJmmLtNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2i7bUPQOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2oQHRkVfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3G9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3IRwyZa3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn3JIT4+KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Jy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3PPXK8tgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3tc580DVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3uwl0HQhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3vsmWt2cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn31Ku8scydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TRrSE13dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4WUEovzwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4bYx+KCQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4hwzk6tDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5KehXbM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5OnsTnJUdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn5P3EqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5SA/C66KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5XSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn51nEdeY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54ArH2h7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn54WIGhVVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn55NPxhDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn59uLJjlQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6b8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6etHhCMQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6f5Wq95AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kfoicG1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7ClRHf/FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7FdLxqfwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7GuZkTYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LMRQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7okIomXxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7r0u+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7smff4yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7xHWrfcfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8PjUVi4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8RsqBmPHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8S8Vgx8EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn8XXwTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn81+d9UjtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn84fGMn7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn85WPkq+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn890snRb9dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 124975,
|
55 |
+
"buffer_size": 1000000,
|
56 |
+
"batch_size": 256,
|
57 |
+
"learning_starts": 100,
|
58 |
+
"tau": 0.005,
|
59 |
+
"gamma": 0.99,
|
60 |
+
"gradient_steps": 1,
|
61 |
+
"optimize_memory_usage": false,
|
62 |
+
"replay_buffer_class": {
|
63 |
+
":type:": "<class 'abc.ABCMeta'>",
|
64 |
+
":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
|
65 |
+
"__module__": "stable_baselines3.common.buffers",
|
66 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
|
67 |
+
"__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
68 |
+
"__init__": "<function DictReplayBuffer.__init__ at 0x79a936ea2b90>",
|
69 |
+
"add": "<function DictReplayBuffer.add at 0x79a936ea2c20>",
|
70 |
+
"sample": "<function DictReplayBuffer.sample at 0x79a936ea2cb0>",
|
71 |
+
"_get_samples": "<function DictReplayBuffer._get_samples at 0x79a936ea2d40>",
|
72 |
+
"__abstractmethods__": "frozenset()",
|
73 |
+
"_abc_impl": "<_abc._abc_data object at 0x79a936e9eb40>"
|
74 |
+
},
|
75 |
+
"replay_buffer_kwargs": {},
|
76 |
+
"train_freq": {
|
77 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
78 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
79 |
+
},
|
80 |
+
"use_sde_at_warmup": false,
|
81 |
+
"target_entropy": -4.0,
|
82 |
+
"ent_coef": "auto",
|
83 |
+
"target_update_interval": 1,
|
84 |
+
"observation_space": {
|
85 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
86 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
87 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
88 |
+
"_shape": null,
|
89 |
+
"dtype": null,
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"action_space": {
|
93 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
94 |
+
":serialized:": "gAWVUQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oRCQ1g5UeR8yIYET1tpw7i4wCMA2luY5SKEQX8OuzynWMHH6ilp1cgvaEAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
95 |
+
"dtype": "float32",
|
96 |
+
"bounded_below": "[ True True True True]",
|
97 |
+
"bounded_above": "[ True True True True]",
|
98 |
+
"_shape": [
|
99 |
+
4
|
100 |
+
],
|
101 |
+
"low": "[-1. -1. -1. -1.]",
|
102 |
+
"high": "[1. 1. 1. 1.]",
|
103 |
+
"low_repr": "-1.0",
|
104 |
+
"high_repr": "1.0",
|
105 |
+
"_np_random": "Generator(PCG64)"
|
106 |
+
},
|
107 |
+
"n_envs": 4,
|
108 |
+
"lr_schedule": {
|
109 |
+
":type:": "<class 'function'>",
|
110 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
111 |
+
},
|
112 |
+
"batch_norm_stats": [],
|
113 |
+
"batch_norm_stats_target": []
|
114 |
+
}
|
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e9d166adcd153a51d8b70a900dfacc851efb2cbeee94d999420785237287b37
|
3 |
+
size 1940
|
sac-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d40e3a61913a487fdbe5e8b837db707dc72ce3fb83f0553c408bd0a6bb1510f
|
3 |
+
size 1489782
|
sac-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7062e66fe3d82a5cc6af42c94bb8ce88ca28fd80ff48d9515f0cabeecab6ce06
|
3 |
+
size 1180
|
sac-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.2.1
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b18ad84576e3ebe8166d6b608c59932116aa256e529f9d1f81a54497559fc4a1
|
3 |
+
size 3222
|