--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: modernbert-ner-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8349195930423368 - name: Recall type: recall value: 0.856277347694379 - name: F1 type: f1 value: 0.8454636091724825 - name: Accuracy type: accuracy value: 0.9751567306569059 language: - en pipeline_tag: token-classification --- # modernbert-ner-conll2003 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0992 - Precision: 0.8349 - Recall: 0.8563 - F1: 0.8455 - Accuracy: 0.9752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2306 | 1.0 | 1756 | 0.2243 | 0.6074 | 0.6483 | 0.6272 | 0.9406 | | 0.1415 | 2.0 | 3512 | 0.1583 | 0.7258 | 0.7536 | 0.7394 | 0.9583 | | 0.1143 | 3.0 | 5268 | 0.1335 | 0.7731 | 0.7989 | 0.7858 | 0.9657 | | 0.0913 | 4.0 | 7024 | 0.1145 | 0.7958 | 0.8256 | 0.8104 | 0.9699 | | 0.0848 | 5.0 | 8780 | 0.1079 | 0.8120 | 0.8408 | 0.8261 | 0.9720 | | 0.0728 | 6.0 | 10536 | 0.1036 | 0.8214 | 0.8452 | 0.8331 | 0.9730 | | 0.0623 | 7.0 | 12292 | 0.1032 | 0.8258 | 0.8487 | 0.8371 | 0.9737 | | 0.0599 | 8.0 | 14048 | 0.0990 | 0.8289 | 0.8527 | 0.8406 | 0.9745 | | 0.0558 | 9.0 | 15804 | 0.0998 | 0.8331 | 0.8541 | 0.8434 | 0.9750 | | 0.0559 | 10.0 | 17560 | 0.0992 | 0.8349 | 0.8563 | 0.8455 | 0.9752 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0