File size: 4,305 Bytes
463c2c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Azerbaijani Language GPT Model
This repository contains an implementation of a GPT (Generative Pre-trained Transformer) model trained on Azerbaijani Wikipedia data. The model is designed to understand and generate Azerbaijani text.
## Project Structure
```
.
βββ README.md
βββ az_tokenizer.json # Trained tokenizer for Azerbaijani text
βββ az_wiki_data.json # Collected Wikipedia data
βββ best_model.pt # Saved state of the best trained model
βββ collect_data.py # Script for collecting Wikipedia articles
βββ generate.py # Text generation script using the trained model
βββ prepare_data.py # Data preprocessing and tokenizer training
βββ requirements.txt # Project dependencies
βββ train.py # GPT model training script
```
## Setup
1. Create and activate virtual environment:
```bash
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
2. Install dependencies based on your system:
For Mac with Apple Silicon (M1/M2):
```bash
# Install PyTorch for Apple Silicon
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
# Install other required packages
pip install transformers wikipedia-api beautifulsoup4 requests
```
For other systems:
```bash
pip install -r requirements.txt
```
## Platform-Specific Notes
### Apple Silicon (M1/M2) Macs
- Uses MPS (Metal Performance Shaders) for acceleration
- Optimized memory management for Apple Silicon
- May require specific PyTorch nightly builds
### CUDA-enabled GPUs
- Automatically utilizes CUDA if available
- Implements mixed precision training
- Memory optimization through gradient accumulation
## Data Collection
1. Collect Azerbaijani Wikipedia articles:
```bash
python collect_data.py
```
This will save articles to `az_wiki_data.json`
2. Prepare data and train tokenizer:
```bash
python prepare_data.py
```
This will create `az_tokenizer.json`
## Training
Train the GPT model:
```bash
python train.py
```
The training script:
- Uses mixed precision training
- Implements gradient accumulation
- Saves model checkpoints every 5 epochs
- Saves the best model based on validation loss
## Model Architecture
- Transformer-based architecture
- Configuration adjustable in `train.py`:
- Embedding dimension: 512
- Attention heads: 8
- Layers: 6
- Block size: 128
- Batch size: 4
## Text Generation
Generate text using the trained model:
```bash
python generate.py
```
The `generate.py` script:
- Loads the trained model and tokenizer
- Generates text based on a user-provided prompt
- Implements sampling strategies such as nucleus sampling and temperature scaling
## Files Description
- `collect_data.py`: Collects articles from Azerbaijani Wikipedia using categories like history, culture, literature, and geography
- `prepare_data.py`: Preprocesses text and trains a BPE tokenizer
- `train.py`: Contains GPT model implementation and training loop
- `generate.py`: Generates text using the trained model and sampling strategies
- `az_wiki_data.json`: Collected and preprocessed Wikipedia articles
- `az_tokenizer.json`: Trained BPE tokenizer for Azerbaijani text
- `best_model.pt`: Saved state of the best model during training
## Training Output
The model saves:
- Best model state as `best_model.pt`
- Regular checkpoints as `checkpoint_epoch_N.pt`
- Interrupted training state as `interrupt_checkpoint.pt`
## Memory Requirements
- Recommended: GPU with at least 8GB memory
- For larger models: Use gradient accumulation steps
- Adjustable batch size and model size based on available memory
## Troubleshooting
Common Issues:
1. Memory Errors:
- Reduce batch size
- Enable gradient accumulation
- Reduce model size
- Clear GPU cache regularly
2. PyTorch Installation:
- For Apple Silicon: Use the nightly build command
- For CUDA: Install appropriate CUDA version
3. Data Loading:
- Reduce number of workers if getting process errors
- Enable pin memory for faster data transfer
## Future Improvements
- [ ] Implement model evaluation metrics
- [ ] Add data augmentation techniques
- [ ] Implement distributed training
- [ ] Add model compression techniques |