Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2120.98 +/- 75.90
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26b51f0870db375fe7f0779d1f3574c6e8c2a18f2f5750572b052a308f8ce44b
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f64b9eb3430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64b9eb34c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64b9eb3550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64b9eb35e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f64b9eb3670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f64b9eb3700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64b9eb3790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64b9eb3820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f64b9eb38b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64b9eb3940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64b9eb39d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64b9eb3a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f64b9eb5240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2500000,
|
63 |
+
"_total_timesteps": 2500000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678951462733096426,
|
68 |
+
"learning_rate": 0.0009,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOe9hb9VXNi/kmMbv9SGFb7ccZO/kPp+vq7LDT/UAN4+0DkWP+ALs7yCeBO9FdGSPOgMtL/oPMy//9xPP7smLr5Hw+o9wh3nvtUGOD8XE5G84+MUv3zumDzGDoa/dT7ouzp0hz+cy+C/UDgMP68Vfr9YLO6+4FrQvjTB4T4Ms7E/wT6ePtVVDj1pUw2+1VOpvserAz+GudK+6WJRv7CSvLyrSiA/AxtFP/6TLT908/E/Gpm0P1n6V75cnCw/XYoavwOAGL96TN09SiVZPnRlIj+R6XG/pcQRP6Cw6b8B94A/1FKFv8usVb8Ws4Q+NWvVPhZrrT51KeQ+yFljPubhZj8aMhQ/JeAyvrvvI7/7GFC/hEfuvs7ngT8dAjK+1d/BPpBwST+TMJM/FHLGPvpRVj5B5no9V3lxvDIwEL8z6cE+kelxv5zL4L+gsOm/AfeAP69Qv767jLq+yRbnPgIciz8QDQk+ozR1vx8bbD5Hca2+unOkPofXfb//gx2/ShZnP9i/4T6NYLO92lTDPvjpFz9JT5U/FbqAv9rvDj8+bI6+hSsVv41U1DztHAC+i7xqv5Hpcb+lxBE/oLDpvwH3gD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACHTG62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6rauPQAAAADFBwDAAAAAABaMI70AAAAAbRDuPwAAAADOVw6+AAAAAKPJ2j8AAAAAKtv1vQAAAADe/eu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk/YMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK6T1jwAAAAAN23+vwAAAAD2MHc9AAAAAOs33z8AAAAAGysJPQAAAAABnuI/AAAAAKfdgz0AAAAAkNHlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUQkDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICO95G8AAAAAEkq978AAAAAYTECPgAAAABXmPQ/AAAAAAYRqDwAAAAAt0f1PwAAAADFpXi8AAAAAHXEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACr34M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf2iPuwAAAAAgsvG/AAAAANlSiD0AAAAAhEP7PwAAAACU4si9AAAAALCr3j8AAAAALgOWvQAAAADXhei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/BGH6/IsCMAWyUTegDjAF0lEdAsLxREORT0nV9lChoBkdAoJJm1IAfdWgHTegDaAhHQLC+hjaPCEZ1fZQoaAZHQKHWCCnP3SNoB03oA2gIR0CwvrBScbzcdX2UKGgGR0CgjyGxMWXUaAdN6ANoCEdAsL+8rRSgoXV9lChoBkdAoZmMeOn2qWgHTegDaAhHQLDCftW+49Z1fZQoaAZHQKHfLgPVd5ZoB03oA2gIR0CwxLyXt0FKdX2UKGgGR0ChkL2qcVgyaAdN6ANoCEdAsMTktPHktHV9lChoBkdAoN++dkJ8fGgHTegDaAhHQLDF7mQr+YN1fZQoaAZHQKFTYMLncL1oB03oA2gIR0CwyfxysCDFdX2UKGgGR0ChhomDL8rJaAdN6ANoCEdAsMy2aKDTSnV9lChoBkdAoXKZjriVB2gHTegDaAhHQLDM2+X7cfx1fZQoaAZHQKGRylfqoqFoB03oA2gIR0CwzeATIvJzdX2UKGgGR0Ch4X8+7lJZaAdN6ANoCEdAsNCTfGdZq3V9lChoBkdAoeNzdYW+G2gHTegDaAhHQLDSvgi/wiJ1fZQoaAZHQJ7v6wV0tAdoB03oA2gIR0Cw0uT8tPHldX2UKGgGR0ChVdkPMB6saAdN6ANoCEdAsNPu8+Roy3V9lChoBkdAoZdicy31BmgHTegDaAhHQLDXbdGRV6x1fZQoaAZHQKCd6RoRIz5oB03oA2gIR0Cw2sVDSgGsdX2UKGgGR0Cgs3yWRigCaAdN6ANoCEdAsNrrCdjG1nV9lChoBkdAnrCSfHxSYWgHTegDaAhHQLDb9/hESdx1fZQoaAZHQKEHaa7VawFoB03oA2gIR0Cw3sXGn4widX2UKGgGR0ChDJmUwBYFaAdN6ANoCEdAsOD4OI68x3V9lChoBkdAoakWclPac2gHTegDaAhHQLDhHmdRR/F1fZQoaAZHQKF0cDGtITZoB03oA2gIR0Cw4jpdWyTqdX2UKGgGR0Cgl/KCxu89aAdN6ANoCEdAsOVP6O5rg3V9lChoBkdAoJWMBp5/smgHTegDaAhHQLDo7pkf9xZ1fZQoaAZHQKFEqnKnvUloB03oA2gIR0Cw6S2uDBdldX2UKGgGR0CgU++dbxEwaAdN6ANoCEdAsOpTkbPyCnV9lChoBkdAoLrB7JGOMmgHTegDaAhHQLDtE4JNTLp1fZQoaAZHQKFCPt2LYPJoB03oA2gIR0Cw7z3VLBbfdX2UKGgGR0CiNlQOWjXWaAdN6ANoCEdAsO9lm5DqnnV9lChoBkdAoTJ9Zq20A2gHTegDaAhHQLDwcIK+i8F1fZQoaAZHQKG3+Rbr1NBoB03oA2gIR0Cw8y7RfF72dX2UKGgGR0Cha7RFI/Z/aAdN6ANoCEdAsPaKdlNDdHV9lChoBkdAkkU93W4EwGgHTegDaAhHQLD2yzf779B1fZQoaAZHQKGGUeXiR4hoB03oA2gIR0Cw+Hkq+ajOdX2UKGgGR0CgJww53kgfaAdN6ANoCEdAsPs5pZfUnXV9lChoBkdAoNUnc8DB/WgHTegDaAhHQLD9XqqwQlN1fZQoaAZHQKCGcBoVVPxoB03oA2gIR0Cw/YRE4NqhdX2UKGgGR0Cg5AT90ihWaAdN6ANoCEdAsP6MGMXJo3V9lChoBkdAoQDgJswcpGgHTegDaAhHQLEBTr+o99t1fZQoaAZHQJ8sP7hvR7ZoB03oA2gIR0CxBAe4G2TgdX2UKGgGR0Cfskjtoi9qaAdN6ANoCEdAsQRI+TvAoHV9lChoBkdAoToh33YcvWgHTegDaAhHQLEF+Nn5BTp1fZQoaAZHQKBotY/Vy3loB03oA2gIR0CxCUNgnc+JdX2UKGgGR0CdluRVp9JCaAdN6ANoCEdAsQtks4DLbHV9lChoBkdAmyWiMkyDZmgHTegDaAhHQLELizRQaaV1fZQoaAZHQJ1EkgU1yeZoB03oA2gIR0CxDJGoNutPdX2UKGgGR0Cd2OzoUzsQaAdN6ANoCEdAsQ9EIv8IiXV9lChoBkdAnz4GdZq20GgHTegDaAhHQLERYHdoFmp1fZQoaAZHQJkruKMvRJFoB03oA2gIR0CxEZXuZ1FIdX2UKGgGR0CfNOcUdq+KaAdN6ANoCEdAsRMqUX531XV9lChoBkdAoNn+GwiaAmgHTegDaAhHQLEXG03Ov+x1fZQoaAZHQJ9xatFKCg9oB03oA2gIR0CxGTrqD9OzdX2UKGgGR0ChRmGFJxvOaAdN6ANoCEdAsRliwSrYG3V9lChoBkdAoBAQSvkilmgHTegDaAhHQLEabe5nUUh1fZQoaAZHQKFFT02cawVoB03oA2gIR0CxHSbTDwYtdX2UKGgGR0CgZ66NEPUbaAdN6ANoCEdAsR9lr8BMjHV9lChoBkdAoTcPAEdNnGgHTegDaAhHQLEfjo60Y0l1fZQoaAZHQKDFFIuGsWBoB03oA2gIR0CxIM6ujh1ldX2UKGgGR0Cf+bbTtsvaaAdN6ANoCEdAsSU5gBtDUnV9lChoBkdAoMvksz2vjmgHTegDaAhHQLEnZakAPup1fZQoaAZHQKC3DkBjnV5oB03oA2gIR0CxJ4yTMaCMdX2UKGgGR0CggdvMjeKsaAdN6ANoCEdAsSiZoFmnO3V9lChoBkdAoE4wBDG96GgHTegDaAhHQLErUZ6lchV1fZQoaAZHQKD/79WIXTFoB03oA2gIR0CxLXxqoIfKdX2UKGgGR0CgQMW8IzFdaAdN6ANoCEdAsS2ji1iON3V9lChoBkdAoMzI2ETQFGgHTegDaAhHQLEus0MPSUl1fZQoaAZHQKE4nGG21D1oB03oA2gIR0CxMtdaEBbOdX2UKGgGR0Cg7SHgxagVaAdN6ANoCEdAsTWT20zCUHV9lChoBkdAoZkdAood/GgHTegDaAhHQLE1vZiuuA91fZQoaAZHQKIn4G3WnTBoB03oA2gIR0CxNs8Aiml7dX2UKGgGR0CgjpsUh3aBaAdN6ANoCEdAsTmRL+PzWnV9lChoBkdAoYfrj/+85GgHTegDaAhHQLE7vzq8lHB1fZQoaAZHQKHzu9US7GxoB03oA2gIR0CxO+ltbcGkdX2UKGgGR0Che82kzoECaAdN6ANoCEdAsTz+w3YL9nV9lChoBkdAognT7XQMQWgHTegDaAhHQLFAmUDMeOp1fZQoaAZHQJnpAxrSE15oB03oA2gIR0CxQ7hoZhrndX2UKGgGR0CgYsXuE25yaAdN6ANoCEdAsUPgEgW8AnV9lChoBkdAoFIDsWweNmgHTegDaAhHQLFE4xh2GIt1fZQoaAZHQJpurmfXf65oB03oA2gIR0CxR6pfQa73dX2UKGgGR0ChKIUbDMvAaAdN6ANoCEdAsUnUZYPoV3V9lChoBkdAoeKynpB5X2gHTegDaAhHQLFJ+Pwd8zB1fZQoaAZHQKD4cpxWDHxoB03oA2gIR0CxSvqRQrMDdX2UKGgGR0CgWhByS3b3aAdN6ANoCEdAsU4I+nqFAXV9lChoBkdAoSedYISlFmgHTegDaAhHQLFRhcinpB51fZQoaAZHQKF15oCdSVJoB03oA2gIR0CxUcX3UQTVdX2UKGgGR0ChsI5oPCl8aAdN6ANoCEdAsVLcOLBKtnV9lChoBkdAokPhaxHG0mgHTegDaAhHQLFVkhQFcIJ1fZQoaAZHQKFa4I8hcJNoB03oA2gIR0CxV7d+9alldX2UKGgGR0CiDpyAxzq9aAdN6ANoCEdAsVfdTdcjaHV9lChoBkdAoQ/8HY6GQGgHTegDaAhHQLFY87EHdGl1fZQoaAZHQKFsP4gRsdloB03oA2gIR0CxW8Lyc0+DdX2UKGgGR0CgC1LrgOz6aAdN6ANoCEdAsV8MNz8xbnV9lChoBkdAoV+p6dDpkmgHTegDaAhHQLFfSWFev6l1fZQoaAZHQKFsfzz3AVRoB03oA2gIR0CxYN5Uo8ZDdX2UKGgGR0ChN03NLUTdaAdN6ANoCEdAsWOUWsRxtHV9lChoBkdAgBy3h4t6HGgHTegDaAhHQLFluO5avA51fZQoaAZHQKCweKgIyCZoB03oA2gIR0CxZeAaisXBdX2UKGgGR0ChUy5id8RdaAdN6ANoCEdAsWbfpxFRYXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 78125,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c458dbd73206192e093aba464cba298ab437c90ff20c758e4fcc0e3e7cac9c5d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:287ebe7fcd2c4a4a56c28033dff2c2d24f49e568b6637836de0b101e52ea97dd
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f64b9eb3430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64b9eb34c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64b9eb3550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64b9eb35e0>", "_build": "<function ActorCriticPolicy._build at 0x7f64b9eb3670>", "forward": "<function ActorCriticPolicy.forward at 0x7f64b9eb3700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64b9eb3790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64b9eb3820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f64b9eb38b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64b9eb3940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64b9eb39d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64b9eb3a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64b9eb5240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678951462733096426, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOe9hb9VXNi/kmMbv9SGFb7ccZO/kPp+vq7LDT/UAN4+0DkWP+ALs7yCeBO9FdGSPOgMtL/oPMy//9xPP7smLr5Hw+o9wh3nvtUGOD8XE5G84+MUv3zumDzGDoa/dT7ouzp0hz+cy+C/UDgMP68Vfr9YLO6+4FrQvjTB4T4Ms7E/wT6ePtVVDj1pUw2+1VOpvserAz+GudK+6WJRv7CSvLyrSiA/AxtFP/6TLT908/E/Gpm0P1n6V75cnCw/XYoavwOAGL96TN09SiVZPnRlIj+R6XG/pcQRP6Cw6b8B94A/1FKFv8usVb8Ws4Q+NWvVPhZrrT51KeQ+yFljPubhZj8aMhQ/JeAyvrvvI7/7GFC/hEfuvs7ngT8dAjK+1d/BPpBwST+TMJM/FHLGPvpRVj5B5no9V3lxvDIwEL8z6cE+kelxv5zL4L+gsOm/AfeAP69Qv767jLq+yRbnPgIciz8QDQk+ozR1vx8bbD5Hca2+unOkPofXfb//gx2/ShZnP9i/4T6NYLO92lTDPvjpFz9JT5U/FbqAv9rvDj8+bI6+hSsVv41U1DztHAC+i7xqv5Hpcb+lxBE/oLDpvwH3gD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACHTG62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6rauPQAAAADFBwDAAAAAABaMI70AAAAAbRDuPwAAAADOVw6+AAAAAKPJ2j8AAAAAKtv1vQAAAADe/eu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk/YMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK6T1jwAAAAAN23+vwAAAAD2MHc9AAAAAOs33z8AAAAAGysJPQAAAAABnuI/AAAAAKfdgz0AAAAAkNHlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUQkDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICO95G8AAAAAEkq978AAAAAYTECPgAAAABXmPQ/AAAAAAYRqDwAAAAAt0f1PwAAAADFpXi8AAAAAHXEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACr34M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf2iPuwAAAAAgsvG/AAAAANlSiD0AAAAAhEP7PwAAAACU4si9AAAAALCr3j8AAAAALgOWvQAAAADXhei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/BGH6/IsCMAWyUTegDjAF0lEdAsLxREORT0nV9lChoBkdAoJJm1IAfdWgHTegDaAhHQLC+hjaPCEZ1fZQoaAZHQKHWCCnP3SNoB03oA2gIR0CwvrBScbzcdX2UKGgGR0CgjyGxMWXUaAdN6ANoCEdAsL+8rRSgoXV9lChoBkdAoZmMeOn2qWgHTegDaAhHQLDCftW+49Z1fZQoaAZHQKHfLgPVd5ZoB03oA2gIR0CwxLyXt0FKdX2UKGgGR0ChkL2qcVgyaAdN6ANoCEdAsMTktPHktHV9lChoBkdAoN++dkJ8fGgHTegDaAhHQLDF7mQr+YN1fZQoaAZHQKFTYMLncL1oB03oA2gIR0CwyfxysCDFdX2UKGgGR0ChhomDL8rJaAdN6ANoCEdAsMy2aKDTSnV9lChoBkdAoXKZjriVB2gHTegDaAhHQLDM2+X7cfx1fZQoaAZHQKGRylfqoqFoB03oA2gIR0CwzeATIvJzdX2UKGgGR0Ch4X8+7lJZaAdN6ANoCEdAsNCTfGdZq3V9lChoBkdAoeNzdYW+G2gHTegDaAhHQLDSvgi/wiJ1fZQoaAZHQJ7v6wV0tAdoB03oA2gIR0Cw0uT8tPHldX2UKGgGR0ChVdkPMB6saAdN6ANoCEdAsNPu8+Roy3V9lChoBkdAoZdicy31BmgHTegDaAhHQLDXbdGRV6x1fZQoaAZHQKCd6RoRIz5oB03oA2gIR0Cw2sVDSgGsdX2UKGgGR0Cgs3yWRigCaAdN6ANoCEdAsNrrCdjG1nV9lChoBkdAnrCSfHxSYWgHTegDaAhHQLDb9/hESdx1fZQoaAZHQKEHaa7VawFoB03oA2gIR0Cw3sXGn4widX2UKGgGR0ChDJmUwBYFaAdN6ANoCEdAsOD4OI68x3V9lChoBkdAoakWclPac2gHTegDaAhHQLDhHmdRR/F1fZQoaAZHQKF0cDGtITZoB03oA2gIR0Cw4jpdWyTqdX2UKGgGR0Cgl/KCxu89aAdN6ANoCEdAsOVP6O5rg3V9lChoBkdAoJWMBp5/smgHTegDaAhHQLDo7pkf9xZ1fZQoaAZHQKFEqnKnvUloB03oA2gIR0Cw6S2uDBdldX2UKGgGR0CgU++dbxEwaAdN6ANoCEdAsOpTkbPyCnV9lChoBkdAoLrB7JGOMmgHTegDaAhHQLDtE4JNTLp1fZQoaAZHQKFCPt2LYPJoB03oA2gIR0Cw7z3VLBbfdX2UKGgGR0CiNlQOWjXWaAdN6ANoCEdAsO9lm5DqnnV9lChoBkdAoTJ9Zq20A2gHTegDaAhHQLDwcIK+i8F1fZQoaAZHQKG3+Rbr1NBoB03oA2gIR0Cw8y7RfF72dX2UKGgGR0Cha7RFI/Z/aAdN6ANoCEdAsPaKdlNDdHV9lChoBkdAkkU93W4EwGgHTegDaAhHQLD2yzf779B1fZQoaAZHQKGGUeXiR4hoB03oA2gIR0Cw+Hkq+ajOdX2UKGgGR0CgJww53kgfaAdN6ANoCEdAsPs5pZfUnXV9lChoBkdAoNUnc8DB/WgHTegDaAhHQLD9XqqwQlN1fZQoaAZHQKCGcBoVVPxoB03oA2gIR0Cw/YRE4NqhdX2UKGgGR0Cg5AT90ihWaAdN6ANoCEdAsP6MGMXJo3V9lChoBkdAoQDgJswcpGgHTegDaAhHQLEBTr+o99t1fZQoaAZHQJ8sP7hvR7ZoB03oA2gIR0CxBAe4G2TgdX2UKGgGR0Cfskjtoi9qaAdN6ANoCEdAsQRI+TvAoHV9lChoBkdAoToh33YcvWgHTegDaAhHQLEF+Nn5BTp1fZQoaAZHQKBotY/Vy3loB03oA2gIR0CxCUNgnc+JdX2UKGgGR0CdluRVp9JCaAdN6ANoCEdAsQtks4DLbHV9lChoBkdAmyWiMkyDZmgHTegDaAhHQLELizRQaaV1fZQoaAZHQJ1EkgU1yeZoB03oA2gIR0CxDJGoNutPdX2UKGgGR0Cd2OzoUzsQaAdN6ANoCEdAsQ9EIv8IiXV9lChoBkdAnz4GdZq20GgHTegDaAhHQLERYHdoFmp1fZQoaAZHQJkruKMvRJFoB03oA2gIR0CxEZXuZ1FIdX2UKGgGR0CfNOcUdq+KaAdN6ANoCEdAsRMqUX531XV9lChoBkdAoNn+GwiaAmgHTegDaAhHQLEXG03Ov+x1fZQoaAZHQJ9xatFKCg9oB03oA2gIR0CxGTrqD9OzdX2UKGgGR0ChRmGFJxvOaAdN6ANoCEdAsRliwSrYG3V9lChoBkdAoBAQSvkilmgHTegDaAhHQLEabe5nUUh1fZQoaAZHQKFFT02cawVoB03oA2gIR0CxHSbTDwYtdX2UKGgGR0CgZ66NEPUbaAdN6ANoCEdAsR9lr8BMjHV9lChoBkdAoTcPAEdNnGgHTegDaAhHQLEfjo60Y0l1fZQoaAZHQKDFFIuGsWBoB03oA2gIR0CxIM6ujh1ldX2UKGgGR0Cf+bbTtsvaaAdN6ANoCEdAsSU5gBtDUnV9lChoBkdAoMvksz2vjmgHTegDaAhHQLEnZakAPup1fZQoaAZHQKC3DkBjnV5oB03oA2gIR0CxJ4yTMaCMdX2UKGgGR0CggdvMjeKsaAdN6ANoCEdAsSiZoFmnO3V9lChoBkdAoE4wBDG96GgHTegDaAhHQLErUZ6lchV1fZQoaAZHQKD/79WIXTFoB03oA2gIR0CxLXxqoIfKdX2UKGgGR0CgQMW8IzFdaAdN6ANoCEdAsS2ji1iON3V9lChoBkdAoMzI2ETQFGgHTegDaAhHQLEus0MPSUl1fZQoaAZHQKE4nGG21D1oB03oA2gIR0CxMtdaEBbOdX2UKGgGR0Cg7SHgxagVaAdN6ANoCEdAsTWT20zCUHV9lChoBkdAoZkdAood/GgHTegDaAhHQLE1vZiuuA91fZQoaAZHQKIn4G3WnTBoB03oA2gIR0CxNs8Aiml7dX2UKGgGR0CgjpsUh3aBaAdN6ANoCEdAsTmRL+PzWnV9lChoBkdAoYfrj/+85GgHTegDaAhHQLE7vzq8lHB1fZQoaAZHQKHzu9US7GxoB03oA2gIR0CxO+ltbcGkdX2UKGgGR0Che82kzoECaAdN6ANoCEdAsTz+w3YL9nV9lChoBkdAognT7XQMQWgHTegDaAhHQLFAmUDMeOp1fZQoaAZHQJnpAxrSE15oB03oA2gIR0CxQ7hoZhrndX2UKGgGR0CgYsXuE25yaAdN6ANoCEdAsUPgEgW8AnV9lChoBkdAoFIDsWweNmgHTegDaAhHQLFE4xh2GIt1fZQoaAZHQJpurmfXf65oB03oA2gIR0CxR6pfQa73dX2UKGgGR0ChKIUbDMvAaAdN6ANoCEdAsUnUZYPoV3V9lChoBkdAoeKynpB5X2gHTegDaAhHQLFJ+Pwd8zB1fZQoaAZHQKD4cpxWDHxoB03oA2gIR0CxSvqRQrMDdX2UKGgGR0CgWhByS3b3aAdN6ANoCEdAsU4I+nqFAXV9lChoBkdAoSedYISlFmgHTegDaAhHQLFRhcinpB51fZQoaAZHQKF15oCdSVJoB03oA2gIR0CxUcX3UQTVdX2UKGgGR0ChsI5oPCl8aAdN6ANoCEdAsVLcOLBKtnV9lChoBkdAokPhaxHG0mgHTegDaAhHQLFVkhQFcIJ1fZQoaAZHQKFa4I8hcJNoB03oA2gIR0CxV7d+9alldX2UKGgGR0CiDpyAxzq9aAdN6ANoCEdAsVfdTdcjaHV9lChoBkdAoQ/8HY6GQGgHTegDaAhHQLFY87EHdGl1fZQoaAZHQKFsP4gRsdloB03oA2gIR0CxW8Lyc0+DdX2UKGgGR0CgC1LrgOz6aAdN6ANoCEdAsV8MNz8xbnV9lChoBkdAoV+p6dDpkmgHTegDaAhHQLFfSWFev6l1fZQoaAZHQKFsfzz3AVRoB03oA2gIR0CxYN5Uo8ZDdX2UKGgGR0ChN03NLUTdaAdN6ANoCEdAsWOUWsRxtHV9lChoBkdAgBy3h4t6HGgHTegDaAhHQLFluO5avA51fZQoaAZHQKCweKgIyCZoB03oA2gIR0CxZeAaisXBdX2UKGgGR0ChUy5id8RdaAdN6ANoCEdAsWbfpxFRYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2100ad0bdb662b3cdf3f08ed9026da52968fd23e226f66827ce9f541ad95e792
|
3 |
+
size 1013782
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2120.9818329366217, "std_reward": 75.89771409497132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-16T08:41:21.259626"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbb0466c1295fc4fd5fb59a6af169f81f46cdaeba6ff8c5d681776159a712f7a
|
3 |
+
size 2136
|