{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64b9eb5240>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678951462733096426, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOe9hb9VXNi/kmMbv9SGFb7ccZO/kPp+vq7LDT/UAN4+0DkWP+ALs7yCeBO9FdGSPOgMtL/oPMy//9xPP7smLr5Hw+o9wh3nvtUGOD8XE5G84+MUv3zumDzGDoa/dT7ouzp0hz+cy+C/UDgMP68Vfr9YLO6+4FrQvjTB4T4Ms7E/wT6ePtVVDj1pUw2+1VOpvserAz+GudK+6WJRv7CSvLyrSiA/AxtFP/6TLT908/E/Gpm0P1n6V75cnCw/XYoavwOAGL96TN09SiVZPnRlIj+R6XG/pcQRP6Cw6b8B94A/1FKFv8usVb8Ws4Q+NWvVPhZrrT51KeQ+yFljPubhZj8aMhQ/JeAyvrvvI7/7GFC/hEfuvs7ngT8dAjK+1d/BPpBwST+TMJM/FHLGPvpRVj5B5no9V3lxvDIwEL8z6cE+kelxv5zL4L+gsOm/AfeAP69Qv767jLq+yRbnPgIciz8QDQk+ozR1vx8bbD5Hca2+unOkPofXfb//gx2/ShZnP9i/4T6NYLO92lTDPvjpFz9JT5U/FbqAv9rvDj8+bI6+hSsVv41U1DztHAC+i7xqv5Hpcb+lxBE/oLDpvwH3gD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACHTG62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6rauPQAAAADFBwDAAAAAABaMI70AAAAAbRDuPwAAAADOVw6+AAAAAKPJ2j8AAAAAKtv1vQAAAADe/eu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANk/YMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK6T1jwAAAAAN23+vwAAAAD2MHc9AAAAAOs33z8AAAAAGysJPQAAAAABnuI/AAAAAKfdgz0AAAAAkNHlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUQkDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICO95G8AAAAAEkq978AAAAAYTECPgAAAABXmPQ/AAAAAAYRqDwAAAAAt0f1PwAAAADFpXi8AAAAAHXEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACr34M1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf2iPuwAAAAAgsvG/AAAAANlSiD0AAAAAhEP7PwAAAACU4si9AAAAALCr3j8AAAAALgOWvQAAAADXhei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/BGH6/IsCMAWyUTegDjAF0lEdAsLxREORT0nV9lChoBkdAoJJm1IAfdWgHTegDaAhHQLC+hjaPCEZ1fZQoaAZHQKHWCCnP3SNoB03oA2gIR0CwvrBScbzcdX2UKGgGR0CgjyGxMWXUaAdN6ANoCEdAsL+8rRSgoXV9lChoBkdAoZmMeOn2qWgHTegDaAhHQLDCftW+49Z1fZQoaAZHQKHfLgPVd5ZoB03oA2gIR0CwxLyXt0FKdX2UKGgGR0ChkL2qcVgyaAdN6ANoCEdAsMTktPHktHV9lChoBkdAoN++dkJ8fGgHTegDaAhHQLDF7mQr+YN1fZQoaAZHQKFTYMLncL1oB03oA2gIR0CwyfxysCDFdX2UKGgGR0ChhomDL8rJaAdN6ANoCEdAsMy2aKDTSnV9lChoBkdAoXKZjriVB2gHTegDaAhHQLDM2+X7cfx1fZQoaAZHQKGRylfqoqFoB03oA2gIR0CwzeATIvJzdX2UKGgGR0Ch4X8+7lJZaAdN6ANoCEdAsNCTfGdZq3V9lChoBkdAoeNzdYW+G2gHTegDaAhHQLDSvgi/wiJ1fZQoaAZHQJ7v6wV0tAdoB03oA2gIR0Cw0uT8tPHldX2UKGgGR0ChVdkPMB6saAdN6ANoCEdAsNPu8+Roy3V9lChoBkdAoZdicy31BmgHTegDaAhHQLDXbdGRV6x1fZQoaAZHQKCd6RoRIz5oB03oA2gIR0Cw2sVDSgGsdX2UKGgGR0Cgs3yWRigCaAdN6ANoCEdAsNrrCdjG1nV9lChoBkdAnrCSfHxSYWgHTegDaAhHQLDb9/hESdx1fZQoaAZHQKEHaa7VawFoB03oA2gIR0Cw3sXGn4widX2UKGgGR0ChDJmUwBYFaAdN6ANoCEdAsOD4OI68x3V9lChoBkdAoakWclPac2gHTegDaAhHQLDhHmdRR/F1fZQoaAZHQKF0cDGtITZoB03oA2gIR0Cw4jpdWyTqdX2UKGgGR0Cgl/KCxu89aAdN6ANoCEdAsOVP6O5rg3V9lChoBkdAoJWMBp5/smgHTegDaAhHQLDo7pkf9xZ1fZQoaAZHQKFEqnKnvUloB03oA2gIR0Cw6S2uDBdldX2UKGgGR0CgU++dbxEwaAdN6ANoCEdAsOpTkbPyCnV9lChoBkdAoLrB7JGOMmgHTegDaAhHQLDtE4JNTLp1fZQoaAZHQKFCPt2LYPJoB03oA2gIR0Cw7z3VLBbfdX2UKGgGR0CiNlQOWjXWaAdN6ANoCEdAsO9lm5DqnnV9lChoBkdAoTJ9Zq20A2gHTegDaAhHQLDwcIK+i8F1fZQoaAZHQKG3+Rbr1NBoB03oA2gIR0Cw8y7RfF72dX2UKGgGR0Cha7RFI/Z/aAdN6ANoCEdAsPaKdlNDdHV9lChoBkdAkkU93W4EwGgHTegDaAhHQLD2yzf779B1fZQoaAZHQKGGUeXiR4hoB03oA2gIR0Cw+Hkq+ajOdX2UKGgGR0CgJww53kgfaAdN6ANoCEdAsPs5pZfUnXV9lChoBkdAoNUnc8DB/WgHTegDaAhHQLD9XqqwQlN1fZQoaAZHQKCGcBoVVPxoB03oA2gIR0Cw/YRE4NqhdX2UKGgGR0Cg5AT90ihWaAdN6ANoCEdAsP6MGMXJo3V9lChoBkdAoQDgJswcpGgHTegDaAhHQLEBTr+o99t1fZQoaAZHQJ8sP7hvR7ZoB03oA2gIR0CxBAe4G2TgdX2UKGgGR0Cfskjtoi9qaAdN6ANoCEdAsQRI+TvAoHV9lChoBkdAoToh33YcvWgHTegDaAhHQLEF+Nn5BTp1fZQoaAZHQKBotY/Vy3loB03oA2gIR0CxCUNgnc+JdX2UKGgGR0CdluRVp9JCaAdN6ANoCEdAsQtks4DLbHV9lChoBkdAmyWiMkyDZmgHTegDaAhHQLELizRQaaV1fZQoaAZHQJ1EkgU1yeZoB03oA2gIR0CxDJGoNutPdX2UKGgGR0Cd2OzoUzsQaAdN6ANoCEdAsQ9EIv8IiXV9lChoBkdAnz4GdZq20GgHTegDaAhHQLERYHdoFmp1fZQoaAZHQJkruKMvRJFoB03oA2gIR0CxEZXuZ1FIdX2UKGgGR0CfNOcUdq+KaAdN6ANoCEdAsRMqUX531XV9lChoBkdAoNn+GwiaAmgHTegDaAhHQLEXG03Ov+x1fZQoaAZHQJ9xatFKCg9oB03oA2gIR0CxGTrqD9OzdX2UKGgGR0ChRmGFJxvOaAdN6ANoCEdAsRliwSrYG3V9lChoBkdAoBAQSvkilmgHTegDaAhHQLEabe5nUUh1fZQoaAZHQKFFT02cawVoB03oA2gIR0CxHSbTDwYtdX2UKGgGR0CgZ66NEPUbaAdN6ANoCEdAsR9lr8BMjHV9lChoBkdAoTcPAEdNnGgHTegDaAhHQLEfjo60Y0l1fZQoaAZHQKDFFIuGsWBoB03oA2gIR0CxIM6ujh1ldX2UKGgGR0Cf+bbTtsvaaAdN6ANoCEdAsSU5gBtDUnV9lChoBkdAoMvksz2vjmgHTegDaAhHQLEnZakAPup1fZQoaAZHQKC3DkBjnV5oB03oA2gIR0CxJ4yTMaCMdX2UKGgGR0CggdvMjeKsaAdN6ANoCEdAsSiZoFmnO3V9lChoBkdAoE4wBDG96GgHTegDaAhHQLErUZ6lchV1fZQoaAZHQKD/79WIXTFoB03oA2gIR0CxLXxqoIfKdX2UKGgGR0CgQMW8IzFdaAdN6ANoCEdAsS2ji1iON3V9lChoBkdAoMzI2ETQFGgHTegDaAhHQLEus0MPSUl1fZQoaAZHQKE4nGG21D1oB03oA2gIR0CxMtdaEBbOdX2UKGgGR0Cg7SHgxagVaAdN6ANoCEdAsTWT20zCUHV9lChoBkdAoZkdAood/GgHTegDaAhHQLE1vZiuuA91fZQoaAZHQKIn4G3WnTBoB03oA2gIR0CxNs8Aiml7dX2UKGgGR0CgjpsUh3aBaAdN6ANoCEdAsTmRL+PzWnV9lChoBkdAoYfrj/+85GgHTegDaAhHQLE7vzq8lHB1fZQoaAZHQKHzu9US7GxoB03oA2gIR0CxO+ltbcGkdX2UKGgGR0Che82kzoECaAdN6ANoCEdAsTz+w3YL9nV9lChoBkdAognT7XQMQWgHTegDaAhHQLFAmUDMeOp1fZQoaAZHQJnpAxrSE15oB03oA2gIR0CxQ7hoZhrndX2UKGgGR0CgYsXuE25yaAdN6ANoCEdAsUPgEgW8AnV9lChoBkdAoFIDsWweNmgHTegDaAhHQLFE4xh2GIt1fZQoaAZHQJpurmfXf65oB03oA2gIR0CxR6pfQa73dX2UKGgGR0ChKIUbDMvAaAdN6ANoCEdAsUnUZYPoV3V9lChoBkdAoeKynpB5X2gHTegDaAhHQLFJ+Pwd8zB1fZQoaAZHQKD4cpxWDHxoB03oA2gIR0CxSvqRQrMDdX2UKGgGR0CgWhByS3b3aAdN6ANoCEdAsU4I+nqFAXV9lChoBkdAoSedYISlFmgHTegDaAhHQLFRhcinpB51fZQoaAZHQKF15oCdSVJoB03oA2gIR0CxUcX3UQTVdX2UKGgGR0ChsI5oPCl8aAdN6ANoCEdAsVLcOLBKtnV9lChoBkdAokPhaxHG0mgHTegDaAhHQLFVkhQFcIJ1fZQoaAZHQKFa4I8hcJNoB03oA2gIR0CxV7d+9alldX2UKGgGR0CiDpyAxzq9aAdN6ANoCEdAsVfdTdcjaHV9lChoBkdAoQ/8HY6GQGgHTegDaAhHQLFY87EHdGl1fZQoaAZHQKFsP4gRsdloB03oA2gIR0CxW8Lyc0+DdX2UKGgGR0CgC1LrgOz6aAdN6ANoCEdAsV8MNz8xbnV9lChoBkdAoV+p6dDpkmgHTegDaAhHQLFfSWFev6l1fZQoaAZHQKFsfzz3AVRoB03oA2gIR0CxYN5Uo8ZDdX2UKGgGR0ChN03NLUTdaAdN6ANoCEdAsWOUWsRxtHV9lChoBkdAgBy3h4t6HGgHTegDaAhHQLFluO5avA51fZQoaAZHQKCweKgIyCZoB03oA2gIR0CxZeAaisXBdX2UKGgGR0ChUy5id8RdaAdN6ANoCEdAsWbfpxFRYXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}