|
optim = AdamW(model.parameters(), lr=5e-5) #tasa de aprendizaje |
|
|
|
# Se inicializa el cargador de datos para los datos de entrenamiento |
|
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) |
|
|
|
for epoch in range(9): |
|
|
|
Epoch 0: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=2.06] |
|
Epoch 1: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=2.64] |
|
Epoch 2: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=2.48] |
|
Epoch 3: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=0.638] |
|
Epoch 4: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=0.184] |
|
Epoch 5: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=1.78] |
|
Epoch 6: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=0.288] |
|
Epoch 7: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=0.45] |
|
Epoch 8: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [01:18<00:00, 1.19it/s, loss=0.0356] |
|
|
|
Precisi贸n del modelo ajustado: 0.786479250334672 |
|
|