--- tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - flemmingmiguel/MBX-7B-v3 base_model: - mistralai/Mistral-7B-v0.1 - flemmingmiguel/MBX-7B-v3 license: openrail --- # Mistral-MBX-7B-slerp Research & Development for AutoSynthetix AI 🌐 Website https://autosynthetix.com/ 📨 Discord https://discord.gg/pAKqENStQr 📦 GitHub https://github.com/jdwebprogrammer 📦 GitLab https://gitlab.com/jdwebprogrammer 🏆 Patreon https://patreon.com/jdwebprogrammer 📷 YouTube https://www.youtube.com/@jdwebprogrammer 📺 Twitch https://www.twitch.tv/jdwebprogrammer 🐦 Twitter(X) https://twitter.com/jdwebprogrammer * License includes the license of the model derivatives: - MergeKit LGPL-3.0 https://github.com/arcee-ai/mergekit?tab=LGPL-3.0-1-ov-file#readme - Mistral Apache 2.0 https://huggingface.co/mistralai/Mistral-7B-v0.1 - CultriX Apache 2.0 https://huggingface.co/flemmingmiguel/MBX-7B-v3 Mistral-MBX-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-v0.1 layer_range: [0, 32] - model: flemmingmiguel/MBX-7B-v3 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "JDWebProgrammer/Mistral-MBX-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```