--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: content results: [] --- # content This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4451 - Accuracy: 0.7772 - F1-score: 0.7788 - Recall: 0.8551 - Precision: 0.7150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.5156 | 0.3814 | 500 | 0.4764 | 0.7687 | 0.7744 | 0.8972 | 0.6812 | | 0.4498 | 0.7628 | 1000 | 0.4483 | 0.7790 | 0.7755 | 0.8622 | 0.7045 | | 0.4198 | 1.1442 | 1500 | 0.4574 | 0.7745 | 0.7723 | 0.8642 | 0.6980 | | 0.3687 | 1.5256 | 2000 | 0.4933 | 0.7696 | 0.7479 | 0.7723 | 0.7250 | | 0.3591 | 1.9069 | 2500 | 0.4475 | 0.7902 | 0.7828 | 0.8545 | 0.7223 | | 0.2809 | 2.2883 | 3000 | 0.5172 | 0.7696 | 0.7397 | 0.7400 | 0.7395 | | 0.2712 | 2.6697 | 3500 | 0.5308 | 0.7799 | 0.7749 | 0.8564 | 0.7076 | | 0.2482 | 3.0511 | 4000 | 0.6287 | 0.7622 | 0.7224 | 0.6992 | 0.7471 | | 0.172 | 3.4325 | 4500 | 0.6831 | 0.7725 | 0.7491 | 0.7678 | 0.7314 | | 0.1802 | 3.8139 | 5000 | 0.7141 | 0.7762 | 0.7570 | 0.7878 | 0.7285 | | 0.1477 | 4.1953 | 5500 | 0.8481 | 0.7653 | 0.7444 | 0.7723 | 0.7184 | | 0.121 | 4.5767 | 6000 | 0.9831 | 0.7639 | 0.7461 | 0.7840 | 0.7117 | | 0.1377 | 4.9580 | 6500 | 0.9748 | 0.7662 | 0.7435 | 0.7658 | 0.7224 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1