File size: 46,007 Bytes
69a8f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# References:
#   https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
#   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py

from functools import partial
import math
import logging
from typing import Sequence, Tuple, Union, Callable, Optional, Dict, Any, List

import torch
import torch.nn as nn
from torch import Tensor
import torch.utils.checkpoint
from torch.nn.init import trunc_normal_
import torch.nn.init
import torch.nn.functional as F

#from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block

logger = logging.getLogger("dinov2")

# SSF finetuning originally by dongzelian
def init_ssf_scale_shift(dim):
    scale = nn.Parameter(torch.ones(dim))
    shift = nn.Parameter(torch.zeros(dim))

    nn.init.normal_(scale, mean=1, std=.02)
    nn.init.normal_(shift, std=.02)

    return scale, shift

def ssf_ada(x, scale, shift):
    assert scale.shape == shift.shape
    if x.shape[-1] == scale.shape[0]:
        return x * scale + shift
    elif x.shape[1] == scale.shape[0]:
        return x * scale.view(1, -1, 1, 1) + shift.view(1, -1, 1, 1)
    else:
        raise ValueError('the input tensor shape does not match the shape of the scale factor.')

# LoRA finetuning originally by edwardjhu
class LoRALayer():
    def __init__(
        self, 
        r: int, 
        lora_alpha: int, 
        lora_dropout: float,
        merge_weights: bool,
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights

class LoRALinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)

        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
            self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        #nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize B the same way as the default for nn.Linear and A to zero
            # this is different than what is described in the paper but should not affect performance
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    # def train(self, mode: bool = True):
    #     def T(w):
    #         return w.transpose(0, 1) if self.fan_in_fan_out else w
    #     nn.Linear.train(self, mode)
    #     if mode:
    #         if self.merge_weights and self.merged:
    #             # Make sure that the weights are not merged
    #             if self.r > 0:
    #                 self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
    #             self.merged = False
    #     else:
    #         if self.merge_weights and not self.merged:
    #             # Merge the weights and mark it
    #             if self.r > 0:
    #                 self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
    #             self.merged = True       

    def forward(self, x: torch.Tensor):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        if self.r > 0 and not self.merged:
            result = F.linear(x, T(self.weight), bias=self.bias)            
            result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
            return result
        else:
            return F.linear(x, T(self.weight), bias=self.bias)



def make_2tuple(x):
    if isinstance(x, tuple):
        assert len(x) == 2
        return x

    assert isinstance(x, int)
    return (x, x)

def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0:
        random_tensor.div_(keep_prob)
    output = x * random_tensor
    return output

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

class LayerScale(nn.Module):
    def __init__(
        self,
        dim: int,
        init_values: Union[float, Tensor] = 1e-5,
        inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))                

    def forward(self, x: Tensor) -> Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class PatchEmbed(nn.Module):
    """
    2D image to patch embedding: (B,C,H,W) -> (B,N,D)

    Args:
        img_size: Image size.
        patch_size: Patch token size.
        in_chans: Number of input image channels.
        embed_dim: Number of linear projection output channels.
        norm_layer: Normalization layer.
    """

    def __init__(
        self,
        img_size: Union[int, Tuple[int, int]] = 224,
        patch_size: Union[int, Tuple[int, int]] = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
        norm_layer: Optional[Callable] = None,
        flatten_embedding: bool = True,
        tuning_mode: Optional[str] = None
    ) -> None:
        super().__init__()

        image_HW = make_2tuple(img_size)
        patch_HW = make_2tuple(patch_size)
        patch_grid_size = (
            image_HW[0] // patch_HW[0],
            image_HW[1] // patch_HW[1],
        )

        self.img_size = image_HW
        self.patch_size = patch_HW
        self.patches_resolution = patch_grid_size
        self.num_patches = patch_grid_size[0] * patch_grid_size[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.flatten_embedding = flatten_embedding

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None

    def forward(self, x: Tensor) -> Tensor:
        _, _, H, W = x.shape
        patch_H, patch_W = self.patch_size

        assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
        assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"

        x = self.proj(x)  # B C H W
        H, W = x.size(2), x.size(3)
        x = x.flatten(2).transpose(1, 2)  # B HW C
        x = self.norm(x)
        if self.tuning_mode == 'ssf':
            x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)
        if not self.flatten_embedding:
            x = x.reshape(-1, H, W, self.embed_dim)  # B H W C
        return x

    def flops(self) -> float:
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops

class Mlp(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: Callable[..., nn.Module] = nn.GELU,
        drop: float = 0.0,
        bias: bool = True,
        tuning_mode: Optional[int] = None
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
        self.drop = nn.Dropout(drop)

        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(hidden_features)
                self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None

    def forward(self, x: Tensor) -> Tensor:
        x = self.fc1(x)
        if self.tuning_mode == 'ssf':
            x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)

        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        if self.tuning_mode == 'ssf':
            x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)

        x = self.drop(x)
        return x


class SwiGLUFFN(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: Callable[..., nn.Module] = None,
        drop: float = 0.0,
        bias: bool = True,
        tuning_mode: Optional[int] = None
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
        self.w3 = nn.Linear(hidden_features, out_features, bias=bias)

        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(2 * hidden_features)
                self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None


    def forward(self, x: Tensor) -> Tensor:
        x12 = self.w12(x)
        if self.tuning_mode == 'ssf':
            x12 = ssf_ada(x12, self.ssf_scale_1, self.ssf_shift_1)

        x1, x2 = x12.chunk(2, dim=-1)
        hidden = F.silu(x1) * x2
        out = self.w3(hidden)

        if self.tuning_mode == 'ssf':
            out = ssf_ada(out, self.ssf_scale_2, self.ssf_scale_2)

        return out


try:
    from xformers.ops import SwiGLU
    #import numpy.bool
    XFORMERS_AVAILABLE = True
except ImportError:
    SwiGLU = SwiGLUFFN
    XFORMERS_AVAILABLE = False

class SwiGLUFFNFused(SwiGLU):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        act_layer: Callable[..., nn.Module] = None,
        drop: float = 0.0,
        bias: bool = True,
    ) -> None:
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
        super().__init__(
            in_features=in_features,
            hidden_features=hidden_features,
            out_features=out_features,
            bias=bias,
        )


try:
    from xformers.ops import memory_efficient_attention, unbind, fmha
    from xformers.components.attention import ScaledDotProduct
    from xformers.components import MultiHeadDispatch
    #import numpy.bool
    XFORMERS_AVAILABLE = True
except ImportError:
    logger.warning("xFormers not available")
    XFORMERS_AVAILABLE = False


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        proj_bias: bool = True,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        window_size: int = 0,
        tuning_mode: Optional[int] = None
    ) -> None:
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        if tuning_mode == 'lora':
            self.tuning_mode = tuning_mode
            self.qkv = LoRALinear(dim, dim * 3, bias=qkv_bias, r=8)
        else:
            self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        
        self.attn_drop = nn.Dropout(attn_drop)
        
        if tuning_mode == 'lora':
            self.tuning_mode = tuning_mode
            self.proj = LoRALinear(dim, dim, bias=proj_bias, r=8)
        else:
            self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)
        
        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim * 3)
                self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None

        #if not self.training:
        #
        # self.attn = ScaledDotProduct()
            #self.attn = MultiHeadDispatch(dim_model=EMB, residual_dropout=DROPOUT, num_heads=HEADS, attention=attn)

    def forward(self, x: Tensor, attn_bias=None) -> Tensor:
        B, N, C = x.shape
        if self.tuning_mode == 'ssf':
            qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)

        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
        attn = q @ k.transpose(-2, -1)

        if attn_bias is not None:
            attn = attn + attn_bias[:, :, :N]

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)

        if self.tuning_mode == 'ssf':
            x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)

        x = self.proj_drop(x)
        return x


class MemEffAttention(Attention):
    def forward(self, x: Tensor, attn_bias=None) -> Tensor:
        if not XFORMERS_AVAILABLE:
        #if True:
            assert attn_bias is None, "xFormers is required for nested tensors usage"
            return super().forward(x, attn_bias)

        B, N, C = x.shape
        if self.tuning_mode == 'ssf':
            qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads)
        else:
            qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)

        q, k, v = unbind(qkv, 2)
        if attn_bias is not None:
            x = memory_efficient_attention(q, k, v, attn_bias=attn_bias[:, :, :N])
        else:
            x = memory_efficient_attention(q, k, v)
        x = x.reshape([B, N, C])

        x = self.proj(x)
        if self.tuning_mode == 'ssf':
            x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)

        x = self.proj_drop(x)
        return x

try:
    from xformers.ops import fmha
    from xformers.ops import scaled_index_add, index_select_cat
    #import numpy.bool
    XFORMERS_AVAILABLE = True
except ImportError:
    logger.warning("xFormers not available")
    XFORMERS_AVAILABLE = False

class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        proj_bias: bool = True,
        ffn_bias: bool = True,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values = None,
        drop_path: float = 0.0,
        act_layer: Callable[..., nn.Module] = nn.GELU,
        norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
        attn_class: Callable[..., nn.Module] = Attention,
        ffn_layer: Callable[..., nn.Module] = Mlp,
        tuning_mode: Optional[int] = None
    ) -> None:
        super().__init__()
        # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
        self.norm1 = norm_layer(dim)
        self.attn = attn_class(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            proj_bias=proj_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            tuning_mode=tuning_mode
        )

        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim)
                self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None

        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = ffn_layer(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
            bias=ffn_bias,
        )
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.sample_drop_ratio = drop_path

    def forward(self, x: Tensor, attn_bias=None) -> Tensor:
        def attn_residual_func(x: Tensor, attn_bias) -> Tensor:
            if self.tuning_mode == 'ssf':
                return self.ls1(self.attn(ssf_ada(self.norm1(x), self.ssf_scale_1, self.ssf_shift_1), attn_bias))
            else:
                return self.ls1(self.attn(self.norm1(x), attn_bias))

        def ffn_residual_func(x: Tensor) -> Tensor:
            if self.tuning_mode == 'ssf':
                return self.ls2(self.mlp(ssf_ada(self.norm2(x), self.ssf_scale_2, self.ssf_shift_2)))
            else:
                return self.ls2(self.mlp(self.norm2(x)))

        if self.training and self.sample_drop_ratio > 0.1:
            # the overhead is compensated only for a drop path rate larger than 0.1
            x = drop_add_residual_stochastic_depth(
                x,
                residual_func=attn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
                attn_bias=attn_bias
            )
            x = drop_add_residual_stochastic_depth(
                x,
                residual_func=ffn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
            )
        elif self.training and self.sample_drop_ratio > 0.0:
            x = x + self.drop_path1(attn_residual_func(x, attn_bias))
            x = x + self.drop_path1(ffn_residual_func(x))  # FIXME: drop_path2
        else:
            x = x + attn_residual_func(x, attn_bias)
            x = x + ffn_residual_func(x)
        return x


def drop_add_residual_stochastic_depth(
    x: Tensor,
    residual_func: Callable[[Tensor], Tensor],
    sample_drop_ratio: float = 0.0, attn_bias=None
) -> Tensor:
    # 1) extract subset using permutation
    b, n, d = x.shape
    sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
    brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
    x_subset = x[brange]

    # 2) apply residual_func to get residual
    residual = residual_func(x_subset, attn_bias)

    x_flat = x.flatten(1)
    residual = residual.flatten(1)

    residual_scale_factor = b / sample_subset_size

    # 3) add the residual
    x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
    return x_plus_residual.view_as(x)


def get_branges_scales(x, sample_drop_ratio=0.0):
    b, n, d = x.shape
    sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
    brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
    residual_scale_factor = b / sample_subset_size
    return brange, residual_scale_factor


def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
    if scaling_vector is None:
        x_flat = x.flatten(1)
        residual = residual.flatten(1)
        x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
    else:
        x_plus_residual = scaled_index_add(
            x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
        )
    return x_plus_residual


attn_bias_cache: Dict[Tuple, Any] = {}


def get_attn_bias_and_cat(x_list, branges=None):
    """
    this will perform the index select, cat the tensors, and provide the attn_bias from cache
    """
    batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
    all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
    if all_shapes not in attn_bias_cache.keys():
        seqlens = []
        for b, x in zip(batch_sizes, x_list):
            for _ in range(b):
                seqlens.append(x.shape[1])
        attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
        attn_bias._batch_sizes = batch_sizes
        attn_bias_cache[all_shapes] = attn_bias

    if branges is not None:
        cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
    else:
        tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
        cat_tensors = torch.cat(tensors_bs1, dim=1)

    return attn_bias_cache[all_shapes], cat_tensors


def drop_add_residual_stochastic_depth_list(
    x_list: List[Tensor],
    residual_func: Callable[[Tensor, Any], Tensor],
    sample_drop_ratio: float = 0.0,
    scaling_vector=None,
) -> Tensor:
    # 1) generate random set of indices for dropping samples in the batch
    branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
    branges = [s[0] for s in branges_scales]
    residual_scale_factors = [s[1] for s in branges_scales]

    # 2) get attention bias and index+concat the tensors
    attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)

    # 3) apply residual_func to get residual, and split the result
    residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias))  # type: ignore

    outputs = []
    for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
        outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
    return outputs


class NestedTensorBlock(Block):
    def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
        """
        x_list contains a list of tensors to nest together and run
        """
        assert isinstance(self.attn, MemEffAttention)

        if self.training and self.sample_drop_ratio > 0.0:

            def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.attn(self.norm1(x), attn_bias=attn_bias)

            def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.mlp(self.norm2(x))

            x_list = drop_add_residual_stochastic_depth_list(
                x_list,
                residual_func=attn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
                scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
            )
            x_list = drop_add_residual_stochastic_depth_list(
                x_list,
                residual_func=ffn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
                scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
            )
            return x_list
        else:

            def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))

            def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.ls2(self.mlp(self.norm2(x)))

            attn_bias, x = get_attn_bias_and_cat(x_list)
            x = x + attn_residual_func(x, attn_bias=attn_bias)
            x = x + ffn_residual_func(x)
            return attn_bias.split(x)

    def forward(self, x_or_x_list, attn_bias=None):
        if isinstance(x_or_x_list, Tensor):
            return super().forward(x_or_x_list, attn_bias)
        elif isinstance(x_or_x_list, list):
            assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
            return self.forward_nested(x_or_x_list)
        else:
            raise AssertionError


def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
    if not depth_first and include_root:
        fn(module=module, name=name)
    for child_name, child_module in module.named_children():
        child_name = ".".join((name, child_name)) if name else child_name
        named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
    if depth_first and include_root:
        fn(module=module, name=name)
    return module


class BlockChunk(nn.ModuleList):
    def forward(self, x, others=None):
        for b in self:
            if others == None:
                x = b(x)
            else:
                x = b(x, others)
        return x


class DinoVisionTransformer(nn.Module):
    def __init__(
        self,
        img_size=518,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=True,
        ffn_bias=True,
        proj_bias=True,
        drop_path_rate=0.0,
        drop_path_uniform=False,
        init_values=1e-5,  # for layerscale: None or 0 => no layerscale
        embed_layer=PatchEmbed,
        act_layer=nn.GELU,
        block_fn=Block,
        ffn_layer="mlp",
        block_chunks=1,
        num_register_tokens=0,
        interpolate_antialias=False,
        interpolate_offset=0.1,
        tuning_mode=None,
        **kwargs
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            proj_bias (bool): enable bias for proj in attn if True
            ffn_bias (bool): enable bias for ffn if True
            drop_path_rate (float): stochastic depth rate
            drop_path_uniform (bool): apply uniform drop rate across blocks
            weight_init (str): weight init scheme
            init_values (float): layer-scale init values
            embed_layer (nn.Module): patch embedding layer
            act_layer (nn.Module): MLP activation layer
            block_fn (nn.Module): transformer block class
            ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
            block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
            num_register_tokens: (int) number of extra cls tokens (so-called "registers")
            interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
            interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
        """
        super().__init__()
        norm_layer = partial(nn.LayerNorm, eps=1e-6)

        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 1
        self.n_blocks = depth
        self.num_heads = num_heads
        self.patch_size = patch_size
        self.num_register_tokens = num_register_tokens
        self.interpolate_antialias = interpolate_antialias
        self.interpolate_offset = interpolate_offset

        if tuning_mode != None:
            self.tuning_mode = tuning_mode
            if tuning_mode == 'ssf':
                self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
            else:
                pass
                #raise NotImplementedError()
        else:
            self.tuning_mode = None
        tuning_mode_list = [tuning_mode] * depth 

        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, tuning_mode=tuning_mode)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        assert num_register_tokens >= 0
        self.register_tokens = (
            nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
        )

        if drop_path_uniform is True:
            dpr = [drop_path_rate] * depth
        else:
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        if ffn_layer == "mlp":
            logger.info("using MLP layer as FFN")
            ffn_layer = Mlp
        elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
            logger.info("using SwiGLU layer as FFN")
            ffn_layer = SwiGLUFFNFused
        elif ffn_layer == "identity":
            logger.info("using Identity layer as FFN")

            def f(*args, **kwargs):
                return nn.Identity()

            ffn_layer = f
        else:
            raise NotImplementedError

        blocks_list = [
            block_fn(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                proj_bias=proj_bias,
                ffn_bias=ffn_bias,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                act_layer=act_layer,
                ffn_layer=ffn_layer,
                init_values=init_values,
                tuning_mode=tuning_mode_list[i]
            )
            for i in range(depth)
        ]
        if block_chunks > 0:
            self.chunked_blocks = True
            chunked_blocks = []
            chunksize = depth // block_chunks
            for i in range(0, depth, chunksize):
                # this is to keep the block index consistent if we chunk the block list
                chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
            self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
        else:
            self.chunked_blocks = False
            self.blocks = nn.ModuleList(blocks_list)

        self.norm = norm_layer(embed_dim)
        self.head = nn.Identity()

        self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))

        self.init_weights()

    def init_weights(self):
        trunc_normal_(self.pos_embed, std=0.02)
        nn.init.normal_(self.cls_token, std=1e-6)
        if self.register_tokens is not None:
            nn.init.normal_(self.register_tokens, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    def interpolate_pos_encoding(self, x, w, h):
        previous_dtype = x.dtype
        npatch = x.shape[1] - 1
        N = self.pos_embed.shape[1] - 1
        if npatch == N and w == h:
            return self.pos_embed
        pos_embed = self.pos_embed.float()
        class_pos_embed = pos_embed[:, 0]
        patch_pos_embed = pos_embed[:, 1:]
        dim = x.shape[-1]
        w0 = w // self.patch_size
        h0 = h // self.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset

        sqrt_N = math.sqrt(N)
        sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
            scale_factor=(sx, sy),
            mode="bicubic",
            antialias=self.interpolate_antialias,
        )

        assert int(w0) == patch_pos_embed.shape[-2]
        assert int(h0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)

    def prepare_tokens_with_masks(self, x, masks=None):
        B, nc, w, h = x.shape
        x = self.patch_embed(x)
        if masks is not None:
            x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)

        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        x = x + self.interpolate_pos_encoding(x, w, h)

        if self.register_tokens is not None:
            x = torch.cat(
                (
                    x[:, :1],
                    self.register_tokens.expand(x.shape[0], -1, -1),
                    x[:, 1:],
                ),
                dim=1,
            )

        return x

    def forward_features_list(self, x_list, masks_list):
        x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
        for blk in self.blocks:
            x = blk(x)

        all_x = x
        output = []
        for x, masks in zip(all_x, masks_list):
            x_norm = self.norm(x)
            output.append(
                {
                    "x_norm_clstoken": x_norm[:, 0],
                    "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
                    "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
                    "x_prenorm": x,
                    "masks": masks,
                }
            )
        return output

    def forward_features(self, x, masks=None):
        if isinstance(x, list):
            return self.forward_features_list(x, masks)

        B, C, H, W = x.size()
        pad_h = (self.patch_size - H % self.patch_size)
        pad_w = (self.patch_size - W % self.patch_size)
        if pad_h == self.patch_size:
            pad_h = 0
        if pad_w == self.patch_size:
            pad_w = 0     
        #x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2))
        if pad_h + pad_w > 0:
            x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear')

        x = self.prepare_tokens_with_masks(x, masks)

        for blk in self.blocks:
            x = blk(x)

        x_norm = self.norm(x)
        if self.tuning_mode == 'ssf': 
            x_norm = ssf_ada(x_norm, self.ssf_scale_1, self.ssf_shift_1)

        # return {
        #     "x_norm_clstoken": x_norm[:, 0],
        #     "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
        #     "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
        #     "x_prenorm": x,
        #     "masks": masks,
        # }
        features = []
        features.append(x_norm)
        features.append(x_norm)
        features.append(x_norm)
        features.append(x_norm)
        return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W, self.num_register_tokens)]
        

    def _get_intermediate_layers_not_chunked(self, x, n=1):
        x = self.prepare_tokens_with_masks(x)
        # If n is an int, take the n last blocks. If it's a list, take them
        output, total_block_len = [], len(self.blocks)
        blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i in blocks_to_take:
                output.append(x)
        assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
        return output

    def _get_intermediate_layers_chunked(self, x, n=1):
        x = self.prepare_tokens_with_masks(x)
        output, i, total_block_len = [], 0, len(self.blocks[-1])
        # If n is an int, take the n last blocks. If it's a list, take them
        blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
        for block_chunk in self.blocks:
            for blk in block_chunk[i:]:  # Passing the nn.Identity()
                x = blk(x)
                if i in blocks_to_take:
                    output.append(x)
                i += 1
        assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
        return output

    def get_intermediate_layers(
        self,
        x: torch.Tensor,
        n: Union[int, Sequence] = 1,  # Layers or n last layers to take
        reshape: bool = False,
        return_class_token: bool = False,
        norm=True,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
        if self.chunked_blocks:
            outputs = self._get_intermediate_layers_chunked(x, n)
        else:
            outputs = self._get_intermediate_layers_not_chunked(x, n)
        if norm:
            outputs = [self.norm(out) for out in outputs]
        class_tokens = [out[:, 0] for out in outputs]
        outputs = [out[:, 1:] for out in outputs]
        if reshape:
            B, _, w, h = x.shape
            outputs = [
                out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
                for out in outputs
            ]
        if return_class_token:
            return tuple(zip(outputs, class_tokens))
        return tuple(outputs)

    def forward(self, *args, is_training=False, **kwargs):
        ret = self.forward_features(*args, **kwargs)
        return ret
        # if is_training:
        #     return ret
        # else:
        #     return self.head(ret["x_norm_clstoken"])


def init_weights_vit_timm(module: nn.Module, name: str = ""):
    """ViT weight initialization, original timm impl (for reproducibility)"""
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=0.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)


def load_ckpt_dino(checkpoint, model):
    if checkpoint is not None:
        try:
            with open(checkpoint, "rb") as f:
                state_dict = torch.load(f)
        except:
            print('NO pretrained imagenet ckpt available! Check your path!')
            del model.mask_token
            return

        try:
            model.load_state_dict(state_dict, strict=True)
        except:
            new_state_dict = {}
            for key, value in state_dict.items():
                if 'blocks' in key:
                    key_new = 'blocks.0' + key[len('blocks'):]
                else:
                    key_new = key
                new_state_dict[key_new] = value

            model.load_state_dict(new_state_dict, strict=True)
        del model.mask_token
        return
    else:
        return


def vit_small(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=384,
        depth=12,
        num_heads=6,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        **kwargs,
    )

    load_ckpt_dino(checkpoint, model)

    return model


def vit_base(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        **kwargs,
    )
    return model


def vit_large(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        **kwargs,
    )

    if checkpoint is not None:
        with open(checkpoint, "rb") as f:
            state_dict = torch.load(f)
        try:
            model.load_state_dict(state_dict, strict=True)
        except:
            new_state_dict = {}
            for key, value in state_dict.items():
                if 'blocks' in key:
                    key_new = 'blocks.0' + key[len('blocks'):]
                else:
                    key_new = key
                new_state_dict[key_new] = value

            model.load_state_dict(new_state_dict, strict=True)
        del model.mask_token
    return model


def vit_giant2(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
    """
    Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
    """
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=1536,
        depth=40,
        num_heads=24,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        ffn_layer='swiglu',
        **kwargs,
    )
    return model



def vit_small_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=384,
        depth=12,
        num_heads=6,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        tuning_mode=tuning_mode,
        **kwargs,
    )

    load_ckpt_dino(checkpoint, model)

    return model


def vit_base_reg(patch_size=14, num_register_tokens=4, checkpoint=None, **kwargs):
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        **kwargs,
    )

    load_ckpt_dino(checkpoint, model)

    return model


def vit_large_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
    model = DinoVisionTransformer(
        img_size = 518,
        patch_size=patch_size,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        tuning_mode=tuning_mode,
        **kwargs,
    )

    load_ckpt_dino(checkpoint, model)

    return model


def vit_giant2_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
    """
    Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
    """
    model = DinoVisionTransformer(
        patch_size=patch_size,
        embed_dim=1536,
        depth=40,
        num_heads=24,
        mlp_ratio=4,
        block_fn=partial(Block, attn_class=MemEffAttention),
        num_register_tokens=num_register_tokens,
        ffn_layer='swiglu',
        tuning_mode=tuning_mode,
        **kwargs,
    )

    load_ckpt_dino(checkpoint, model)

    return model

if __name__ == '__main__':
    try:
        from mmcv.utils import Config
    except:
        from mmengine import Config    
    
    #rgb = torch.rand((2, 3, 518, 518)).cuda()

    #cfg.data_basic['crop_size']['0'] 
    #cfg.data_basic['crop_size']['1'] 
    cfg = Config.fromfile('/opt/ml/project/mu.hu/projects/monodepth_vit/mono/configs/RAFTDecoder/vit.raft5.large.kitti.py')

    #rgb = torch.arange(0, 2*3*1036*1036, 1).cuda().float().view(2, 3, 1036, 1036)
    rgb = torch.zeros(1, 3, 616, 1064).cuda()
    cfg['tuning_mode'] = 'ssf' 
    #model = vit_large_reg(checkpoint="/cpfs02/shared/public/groups/local_map/yvan/pretrained_weight_repo/vit/dinov2_vitl14_reg4_pretrain.pth", kwarg=cfg).cuda()
    model = vit_large_reg(tuning_mode='ssf').cuda()

    #import timm
    #model2 = timm.models.vision_transformer.vit_large_patch14_dinov2().cuda()
    #timm.models.load_checkpoint(model2, '/cpfs02/shared/public/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth', filter_fn=timm.models.vision_transformer.checkpoint_filter_fn)

    out1 = model(rgb)
    #out2 = model2(rgb)
    temp = 0