|
import os |
|
import os.path as osp |
|
import cv2 |
|
import time |
|
import sys |
|
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
sys.path.append(CODE_SPACE) |
|
import argparse |
|
import mmcv |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
try: |
|
from mmcv.utils import Config, DictAction |
|
except: |
|
from mmengine import Config, DictAction |
|
from datetime import timedelta |
|
import random |
|
import numpy as np |
|
from mono.utils.logger import setup_logger |
|
import glob |
|
from mono.utils.comm import init_env |
|
from mono.model.monodepth_model import get_configured_monodepth_model |
|
from mono.utils.running import load_ckpt |
|
from mono.utils.do_test import do_scalecano_test_with_custom_data |
|
from mono.utils.mldb import load_data_info, reset_ckpt_path |
|
from mono.utils.custom_data import load_from_annos, load_data |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a segmentor') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument('--show-dir', help='the dir to save logs and visualization results') |
|
parser.add_argument('--load-from', help='the checkpoint file to load weights from') |
|
parser.add_argument('--node_rank', type=int, default=0) |
|
parser.add_argument('--nnodes', type=int, default=1, help='number of nodes') |
|
parser.add_argument('--options', nargs='+', action=DictAction, help='custom options') |
|
parser.add_argument('--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', help='job launcher') |
|
parser.add_argument('--test_data_path', default='None', type=str, help='the path of test data') |
|
args = parser.parse_args() |
|
return args |
|
|
|
def main(args): |
|
os.chdir(CODE_SPACE) |
|
cfg = Config.fromfile(args.config) |
|
|
|
if args.options is not None: |
|
cfg.merge_from_dict(args.options) |
|
|
|
|
|
if args.show_dir is not None: |
|
|
|
cfg.show_dir = args.show_dir |
|
else: |
|
|
|
cfg.show_dir = osp.join('./show_dirs', |
|
osp.splitext(osp.basename(args.config))[0], |
|
args.timestamp) |
|
|
|
|
|
if args.load_from is None: |
|
raise RuntimeError('Please set model path!') |
|
cfg.load_from = args.load_from |
|
|
|
|
|
data_info = {} |
|
load_data_info('data_info', data_info=data_info) |
|
cfg.mldb_info = data_info |
|
|
|
reset_ckpt_path(cfg.model, data_info) |
|
|
|
|
|
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True) |
|
|
|
|
|
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log') |
|
logger = setup_logger(cfg.log_file) |
|
|
|
|
|
logger.info(f'Config:\n{cfg.pretty_text}') |
|
|
|
|
|
if args.launcher == 'None': |
|
cfg.distributed = False |
|
else: |
|
cfg.distributed = True |
|
init_env(args.launcher, cfg) |
|
logger.info(f'Distributed training: {cfg.distributed}') |
|
|
|
|
|
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config))) |
|
test_data_path = args.test_data_path |
|
if not os.path.isabs(test_data_path): |
|
test_data_path = osp.join(CODE_SPACE, test_data_path) |
|
|
|
if 'json' in test_data_path: |
|
test_data = load_from_annos(test_data_path) |
|
else: |
|
test_data = load_data(args.test_data_path) |
|
|
|
if not cfg.distributed: |
|
main_worker(0, cfg, args.launcher, test_data) |
|
else: |
|
|
|
if args.launcher == 'ror': |
|
local_rank = cfg.dist_params.local_rank |
|
main_worker(local_rank, cfg, args.launcher, test_data) |
|
else: |
|
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher, test_data)) |
|
|
|
def main_worker(local_rank: int, cfg: dict, launcher: str, test_data: list): |
|
if cfg.distributed: |
|
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank |
|
cfg.dist_params.local_rank = local_rank |
|
|
|
if launcher == 'ror': |
|
init_torch_process_group(use_hvd=False) |
|
else: |
|
torch.cuda.set_device(local_rank) |
|
default_timeout = timedelta(minutes=30) |
|
dist.init_process_group( |
|
backend=cfg.dist_params.backend, |
|
init_method=cfg.dist_params.dist_url, |
|
world_size=cfg.dist_params.world_size, |
|
rank=cfg.dist_params.global_rank, |
|
timeout=default_timeout) |
|
|
|
logger = setup_logger(cfg.log_file) |
|
|
|
model = get_configured_monodepth_model(cfg, ) |
|
|
|
|
|
if cfg.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), |
|
device_ids=[local_rank], |
|
output_device=local_rank, |
|
find_unused_parameters=True) |
|
else: |
|
model = torch.nn.DataParallel(model).cuda() |
|
|
|
|
|
model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False) |
|
model.eval() |
|
|
|
do_scalecano_test_with_custom_data( |
|
model, |
|
cfg, |
|
test_data, |
|
logger, |
|
cfg.distributed, |
|
local_rank |
|
) |
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
args.timestamp = timestamp |
|
main(args) |