|
import collections |
|
import cv2 |
|
import math |
|
import numpy as np |
|
import numbers |
|
import random |
|
import torch |
|
|
|
import matplotlib |
|
import matplotlib.cm |
|
|
|
|
|
""" |
|
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default) |
|
for image manipulation. |
|
""" |
|
|
|
class Compose(object): |
|
|
|
def __init__(self, transforms): |
|
self.transforms = transforms |
|
|
|
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): |
|
for t in self.transforms: |
|
images, labels, intrinsics, cam_models, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, other_labels, transform_paras) |
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
class ToTensor(object): |
|
|
|
def __init__(self, **kwargs): |
|
return |
|
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): |
|
if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list): |
|
raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists.")) |
|
if len(images) != len(intrinsics): |
|
raise (RuntimeError("Numbers of images and intrinsics are not matched.")) |
|
if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray): |
|
raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label." |
|
"[eg: data readed by cv2.imread()].\n")) |
|
if not isinstance(intrinsics[0], list): |
|
raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics")) |
|
|
|
if len(images[0].shape) > 3 or len(images[0].shape) < 2: |
|
raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n")) |
|
if len(labels[0].shape) > 3 or len(labels[0].shape) < 2: |
|
raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n")) |
|
|
|
if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3: |
|
raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n")) |
|
|
|
for i, img in enumerate(images): |
|
if len(img.shape) == 2: |
|
img = np.expand_dims(img, axis=2) |
|
images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float() |
|
for i, lab in enumerate(labels): |
|
if len(lab.shape) == 2: |
|
lab = np.expand_dims(lab, axis=0) |
|
labels[i] = torch.from_numpy(lab).float() |
|
for i, intrinsic in enumerate(intrinsics): |
|
if len(intrinsic) == 3: |
|
intrinsic = [intrinsic[0],] + intrinsic |
|
intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float) |
|
if cam_models is not None: |
|
for i, cam_model in enumerate(cam_models): |
|
cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None |
|
if other_labels is not None: |
|
for i, lab in enumerate(other_labels): |
|
if len(lab.shape) == 2: |
|
lab = np.expand_dims(lab, axis=0) |
|
other_labels[i] = torch.from_numpy(lab).float() |
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
class Normalize(object): |
|
|
|
def __init__(self, mean, std=None, **kwargs): |
|
if std is None: |
|
assert len(mean) > 0 |
|
else: |
|
assert len(mean) == len(std) |
|
self.mean = torch.tensor(mean).float()[:, None, None] |
|
self.std = torch.tensor(std).float()[:, None, None] if std is not None \ |
|
else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None] |
|
|
|
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, img in enumerate(images): |
|
img = torch.div((img - self.mean), self.std) |
|
images[i] = img |
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
class LableScaleCanonical(object): |
|
""" |
|
To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are |
|
mapped to a canonical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve |
|
Args: |
|
images: list of RGB images. |
|
labels: list of depth/disparity labels. |
|
other labels: other labels, such as instance segmentations, semantic segmentations... |
|
""" |
|
def __init__(self, **kwargs): |
|
self.canonical_focal = kwargs['focal_length'] |
|
|
|
def _get_scale_ratio(self, intrinsic): |
|
target_focal_x = intrinsic[0] |
|
label_scale_ratio = self.canonical_focal / target_focal_x |
|
pose_scale_ratio = 1.0 |
|
return label_scale_ratio, pose_scale_ratio |
|
|
|
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): |
|
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 |
|
assert labels[0].dtype == np.float32 |
|
|
|
label_scale_ratio = None |
|
pose_scale_ratio = None |
|
|
|
for i in range(len(intrinsics)): |
|
img_i = images[i] |
|
label_i = labels[i] if i < len(labels) else None |
|
intrinsic_i = intrinsics[i].copy() |
|
cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None |
|
|
|
label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i) |
|
|
|
|
|
intrinsics[i] = [intrinsic_i[0] * label_scale_ratio, intrinsic_i[1] * label_scale_ratio, intrinsic_i[2], intrinsic_i[3]] |
|
|
|
|
|
if label_i is not None: |
|
labels[i] = label_i * label_scale_ratio |
|
|
|
if cam_model_i is not None: |
|
|
|
ori_h, ori_w, _ = img_i.shape |
|
cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i]) |
|
|
|
|
|
if transform_paras is not None: |
|
transform_paras.update(label_scale_factor=label_scale_ratio, focal_scale_factor=label_scale_ratio) |
|
|
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
class ResizeKeepRatio(object): |
|
""" |
|
Resize and pad to a given size. Hold the aspect ratio. |
|
This resizing assumes that the camera model remains unchanged. |
|
Args: |
|
resize_size: predefined output size. |
|
""" |
|
def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs): |
|
if isinstance(resize_size, int): |
|
self.resize_h = resize_size |
|
self.resize_w = resize_size |
|
elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \ |
|
and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \ |
|
and resize_size[0] > 0 and resize_size[1] > 0: |
|
self.resize_h = resize_size[0] |
|
self.resize_w = resize_size[1] |
|
else: |
|
raise (RuntimeError("crop size error.\n")) |
|
if padding is None: |
|
self.padding = padding |
|
elif isinstance(padding, list): |
|
if all(isinstance(i, numbers.Number) for i in padding): |
|
self.padding = padding |
|
else: |
|
raise (RuntimeError("padding in Crop() should be a number list\n")) |
|
if len(padding) != 3: |
|
raise (RuntimeError("padding channel is not equal with 3\n")) |
|
else: |
|
raise (RuntimeError("padding in Crop() should be a number list\n")) |
|
if isinstance(ignore_label, int): |
|
self.ignore_label = ignore_label |
|
else: |
|
raise (RuntimeError("ignore_label should be an integer number\n")) |
|
|
|
self.canonical_focal = kwargs['focal_length'] |
|
|
|
def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio): |
|
""" |
|
Resize data first and then do the padding. |
|
'label' will be scaled. |
|
""" |
|
h, w, _ = image.shape |
|
reshape_h = int(resize_ratio * h) |
|
reshape_w = int(resize_ratio * w) |
|
|
|
pad_h, pad_w, pad_h_half, pad_w_half = padding |
|
|
|
|
|
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
image = cv2.copyMakeBorder( |
|
image, |
|
pad_h_half, |
|
pad_h - pad_h_half, |
|
pad_w_half, |
|
pad_w - pad_w_half, |
|
cv2.BORDER_CONSTANT, |
|
value=self.padding) |
|
|
|
if label is not None: |
|
|
|
label = resize_depth_preserve(label, (reshape_h, reshape_w)) |
|
label = cv2.copyMakeBorder( |
|
label, |
|
pad_h_half, |
|
pad_h - pad_h_half, |
|
pad_w_half, |
|
pad_w - pad_w_half, |
|
cv2.BORDER_CONSTANT, |
|
value=self.ignore_label) |
|
|
|
label = label / to_scale_ratio |
|
|
|
|
|
if intrinsic is not None: |
|
intrinsic[0] = intrinsic[0] * resize_ratio / to_scale_ratio |
|
intrinsic[1] = intrinsic[1] * resize_ratio / to_scale_ratio |
|
intrinsic[2] = intrinsic[2] * resize_ratio |
|
intrinsic[3] = intrinsic[3] * resize_ratio |
|
|
|
if cam_model is not None: |
|
|
|
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) |
|
cam_model = cv2.copyMakeBorder( |
|
cam_model, |
|
pad_h_half, |
|
pad_h - pad_h_half, |
|
pad_w_half, |
|
pad_w - pad_w_half, |
|
cv2.BORDER_CONSTANT, |
|
value=self.ignore_label) |
|
|
|
|
|
if intrinsic is not None: |
|
intrinsic[2] = intrinsic[2] + pad_w_half |
|
intrinsic[3] = intrinsic[3] + pad_h_half |
|
return image, label, intrinsic, cam_model |
|
|
|
def get_label_scale_factor(self, image, intrinsic, resize_ratio): |
|
ori_h, ori_w, _ = image.shape |
|
|
|
ori_focal = intrinsic[0] |
|
|
|
to_canonical_ratio = self.canonical_focal / ori_focal |
|
to_scale_ratio = resize_ratio / to_canonical_ratio |
|
return to_scale_ratio |
|
|
|
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None): |
|
target_h, target_w, _ = images[0].shape |
|
resize_ratio_h = self.resize_h / target_h |
|
resize_ratio_w = self.resize_w / target_w |
|
resize_ratio = min(resize_ratio_h, resize_ratio_w) |
|
reshape_h = int(resize_ratio * target_h) |
|
reshape_w = int(resize_ratio * target_w) |
|
pad_h = max(self.resize_h - reshape_h, 0) |
|
pad_w = max(self.resize_w - reshape_w, 0) |
|
pad_h_half = int(pad_h / 2) |
|
pad_w_half = int(pad_w / 2) |
|
|
|
pad_info = [pad_h, pad_w, pad_h_half, pad_w_half] |
|
to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio) |
|
|
|
for i in range(len(images)): |
|
img = images[i] |
|
label = labels[i] if i < len(labels) else None |
|
intrinsic = intrinsics[i] if i < len(intrinsics) else None |
|
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None |
|
img, label, intrinsic, cam_model = self.main_data_transform( |
|
img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio) |
|
images[i] = img |
|
if label is not None: |
|
labels[i] = label |
|
if intrinsic is not None: |
|
intrinsics[i] = intrinsic |
|
if cam_model is not None: |
|
cam_models[i] = cam_model |
|
|
|
if other_labels is not None: |
|
|
|
for i, other_lab in enumerate(other_labels): |
|
|
|
other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) |
|
|
|
other_labels[i] = cv2.copyMakeBorder( |
|
other_lab, |
|
pad_h_half, |
|
pad_h - pad_h_half, |
|
pad_w_half, |
|
pad_w - pad_w_half, |
|
cv2.BORDER_CONSTANT, |
|
value=self.ignore_label) |
|
|
|
pad = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half] |
|
if transform_paras is not None: |
|
pad_old = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] |
|
new_pad = [pad_old[0] + pad[0], pad_old[1] + pad[1], pad_old[2] + pad[2], pad_old[3] + pad[3]] |
|
transform_paras.update(dict(pad=new_pad)) |
|
if 'label_scale_factor' in transform_paras: |
|
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio |
|
else: |
|
transform_paras.update(label_scale_factor=1.0/to_scale_ratio) |
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
class BGR2RGB(object): |
|
|
|
def __init__(self, **kwargs): |
|
return |
|
def __call__(self, images, labels, intrinsics, cam_models=None,other_labels=None, transform_paras=None): |
|
for i, img in enumerate(images): |
|
images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
return images, labels, intrinsics, cam_models, other_labels, transform_paras |
|
|
|
|
|
def resize_depth_preserve(depth, shape): |
|
""" |
|
Resizes depth map preserving all valid depth pixels |
|
Multiple downsampled points can be assigned to the same pixel. |
|
|
|
Parameters |
|
---------- |
|
depth : np.array [h,w] |
|
Depth map |
|
shape : tuple (H,W) |
|
Output shape |
|
|
|
Returns |
|
------- |
|
depth : np.array [H,W,1] |
|
Resized depth map |
|
""" |
|
|
|
depth = np.squeeze(depth) |
|
h, w = depth.shape |
|
x = depth.reshape(-1) |
|
|
|
uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2) |
|
|
|
idx = x > 0 |
|
crd, val = uv[idx], x[idx] |
|
|
|
crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32) |
|
crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32) |
|
|
|
idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1]) |
|
crd, val = crd[idx], val[idx] |
|
|
|
depth = np.zeros(shape) |
|
depth[crd[:, 0], crd[:, 1]] = val |
|
|
|
return depth |
|
|
|
|
|
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array: |
|
""" |
|
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. |
|
""" |
|
fx, fy, u0, v0 = intrinsics |
|
f = (fx + fy) / 2.0 |
|
|
|
x_row = np.arange(0, W).astype(np.float32) |
|
x_row_center_norm = (x_row - u0) / W |
|
x_center = np.tile(x_row_center_norm, (H, 1)) |
|
|
|
y_col = np.arange(0, H).astype(np.float32) |
|
y_col_center_norm = (y_col - v0) / H |
|
y_center = np.tile(y_col_center_norm, (W, 1)).T |
|
|
|
|
|
fov_x = np.arctan(x_center / (f / W)) |
|
fov_y = np.arctan(y_center/ (f / H)) |
|
|
|
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2) |
|
return cam_model |
|
|
|
def gray_to_colormap(img, cmap='rainbow'): |
|
""" |
|
Transfer gray map to matplotlib colormap |
|
""" |
|
assert img.ndim == 2 |
|
|
|
img[img<0] = 0 |
|
mask_invalid = img < 1e-10 |
|
img = img / (img.max() + 1e-8) |
|
norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1) |
|
cmap_m = matplotlib.cm.get_cmap(cmap) |
|
map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m) |
|
colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8) |
|
colormap[mask_invalid] = 0 |
|
return colormap |