|
import matplotlib.pyplot as plt |
|
import os, cv2 |
|
import numpy as np |
|
from mono.utils.transform import gray_to_colormap |
|
import shutil |
|
import glob |
|
from mono.utils.running import main_process |
|
import torch |
|
from html4vision import Col, imagetable |
|
|
|
def save_raw_imgs( |
|
pred: torch.tensor, |
|
rgb: torch.tensor, |
|
filename: str, |
|
save_dir: str, |
|
scale: float=200.0, |
|
target: torch.tensor=None, |
|
): |
|
""" |
|
Save raw GT, predictions, RGB in the same file. |
|
""" |
|
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_rgb.jpg'), rgb) |
|
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_d.png'), (pred*scale).astype(np.uint16)) |
|
if target is not None: |
|
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_gt.png'), (target*scale).astype(np.uint16)) |
|
|
|
|
|
def save_val_imgs( |
|
iter: int, |
|
pred: torch.tensor, |
|
target: torch.tensor, |
|
rgb: torch.tensor, |
|
filename: str, |
|
save_dir: str, |
|
tb_logger=None |
|
): |
|
""" |
|
Save GT, predictions, RGB in the same file. |
|
""" |
|
rgb, pred_scale, target_scale, pred_color, target_color = get_data_for_log(pred, target, rgb) |
|
rgb = rgb.transpose((1, 2, 0)) |
|
cat_img = np.concatenate([rgb, pred_color, target_color], axis=0) |
|
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img) |
|
|
|
|
|
if tb_logger is not None: |
|
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter) |
|
|
|
def save_normal_val_imgs( |
|
iter: int, |
|
pred: torch.tensor, |
|
targ: torch.tensor, |
|
rgb: torch.tensor, |
|
filename: str, |
|
save_dir: str, |
|
tb_logger=None, |
|
mask=None, |
|
): |
|
""" |
|
Save GT, predictions, RGB in the same file. |
|
""" |
|
mean = np.array([123.675, 116.28, 103.53])[np.newaxis, np.newaxis, :] |
|
std= np.array([58.395, 57.12, 57.375])[np.newaxis, np.newaxis, :] |
|
pred = pred.squeeze() |
|
targ = targ.squeeze() |
|
rgb = rgb.squeeze() |
|
|
|
if pred.size(0) == 3: |
|
pred = pred.permute(1,2,0) |
|
if targ.size(0) == 3: |
|
targ = targ.permute(1,2,0) |
|
if rgb.size(0) == 3: |
|
rgb = rgb.permute(1,2,0) |
|
|
|
pred_color = vis_surface_normal(pred, mask) |
|
targ_color = vis_surface_normal(targ, mask) |
|
rgb_color = ((rgb.cpu().numpy() * std) + mean).astype(np.uint8) |
|
|
|
try: |
|
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0) |
|
except: |
|
pred_color = cv2.resize(pred_color, (rgb.shape[1], rgb.shape[0])) |
|
targ_color = cv2.resize(targ_color, (rgb.shape[1], rgb.shape[0])) |
|
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0) |
|
|
|
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img) |
|
|
|
|
|
if tb_logger is not None: |
|
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter) |
|
|
|
def get_data_for_log(pred: torch.tensor, target: torch.tensor, rgb: torch.tensor): |
|
mean = np.array([123.675, 116.28, 103.53])[:, np.newaxis, np.newaxis] |
|
std= np.array([58.395, 57.12, 57.375])[:, np.newaxis, np.newaxis] |
|
|
|
pred = pred.squeeze().cpu().numpy() |
|
target = target.squeeze().cpu().numpy() |
|
rgb = rgb.squeeze().cpu().numpy() |
|
|
|
pred[pred<0] = 0 |
|
target[target<0] = 0 |
|
max_scale = max(pred.max(), target.max()) |
|
pred_scale = (pred/max_scale * 10000).astype(np.uint16) |
|
target_scale = (target/max_scale * 10000).astype(np.uint16) |
|
pred_color = gray_to_colormap(pred) |
|
target_color = gray_to_colormap(target) |
|
pred_color = cv2.resize(pred_color, (rgb.shape[2], rgb.shape[1])) |
|
target_color = cv2.resize(target_color, (rgb.shape[2], rgb.shape[1])) |
|
|
|
rgb = ((rgb * std) + mean).astype(np.uint8) |
|
return rgb, pred_scale, target_scale, pred_color, target_color |
|
|
|
|
|
def create_html(name2path, save_path='index.html', size=(256, 384)): |
|
|
|
cols = [] |
|
for k, v in name2path.items(): |
|
col_i = Col('img', k, v) |
|
cols.append(col_i) |
|
|
|
imagetable(cols, out_file=save_path, imsize=size) |
|
|
|
def vis_surface_normal(normal: torch.tensor, mask: torch.tensor=None) -> np.array: |
|
""" |
|
Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255] |
|
Aargs: |
|
normal (torch.tensor, [h, w, 3]): surface normal |
|
mask (torch.tensor, [h, w]): valid masks |
|
""" |
|
normal = normal.cpu().numpy().squeeze() |
|
n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True)) |
|
n_img_norm = normal / (n_img_L2 + 1e-8) |
|
normal_vis = n_img_norm * 127 |
|
normal_vis += 128 |
|
normal_vis = normal_vis.astype(np.uint8) |
|
if mask is not None: |
|
mask = mask.cpu().numpy().squeeze() |
|
normal_vis[~mask] = 0 |
|
return normal_vis |
|
|
|
|