JW17 commited on
Commit
020138c
·
verified ·
1 Parent(s): 8501b0b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +55 -0
  3. added_tokens.json +24 -0
  4. checkpoint-100/added_tokens.json +24 -0
  5. checkpoint-100/config.json +37 -0
  6. checkpoint-100/merges.txt +0 -0
  7. checkpoint-100/model-00001-of-00002.safetensors +3 -0
  8. checkpoint-100/model-00002-of-00002.safetensors +3 -0
  9. checkpoint-100/model.safetensors.index.json +346 -0
  10. checkpoint-100/special_tokens_map.json +31 -0
  11. checkpoint-100/tokenizer.json +3 -0
  12. checkpoint-100/tokenizer_config.json +208 -0
  13. checkpoint-100/trainer_state.json +1333 -0
  14. checkpoint-100/training_args.bin +3 -0
  15. checkpoint-100/vocab.json +0 -0
  16. checkpoint-200/added_tokens.json +24 -0
  17. checkpoint-200/config.json +37 -0
  18. checkpoint-200/merges.txt +0 -0
  19. checkpoint-200/model-00001-of-00002.safetensors +3 -0
  20. checkpoint-200/model-00002-of-00002.safetensors +3 -0
  21. checkpoint-200/model.safetensors.index.json +346 -0
  22. checkpoint-200/special_tokens_map.json +31 -0
  23. checkpoint-200/tokenizer.json +3 -0
  24. checkpoint-200/tokenizer_config.json +208 -0
  25. checkpoint-200/trainer_state.json +2633 -0
  26. checkpoint-200/training_args.bin +3 -0
  27. checkpoint-200/vocab.json +0 -0
  28. checkpoint-300/added_tokens.json +24 -0
  29. checkpoint-300/config.json +37 -0
  30. checkpoint-300/merges.txt +0 -0
  31. checkpoint-300/model-00001-of-00002.safetensors +3 -0
  32. checkpoint-300/model-00002-of-00002.safetensors +3 -0
  33. checkpoint-300/model.safetensors.index.json +346 -0
  34. checkpoint-300/special_tokens_map.json +31 -0
  35. checkpoint-300/tokenizer.json +3 -0
  36. checkpoint-300/tokenizer_config.json +208 -0
  37. checkpoint-300/trainer_state.json +3933 -0
  38. checkpoint-300/training_args.bin +3 -0
  39. checkpoint-300/vocab.json +0 -0
  40. checkpoint-400/added_tokens.json +24 -0
  41. checkpoint-400/config.json +37 -0
  42. checkpoint-400/merges.txt +0 -0
  43. checkpoint-400/model-00001-of-00002.safetensors +3 -0
  44. checkpoint-400/model-00002-of-00002.safetensors +3 -0
  45. checkpoint-400/model.safetensors.index.json +346 -0
  46. checkpoint-400/special_tokens_map.json +31 -0
  47. checkpoint-400/tokenizer.json +3 -0
  48. checkpoint-400/tokenizer_config.json +208 -0
  49. checkpoint-400/trainer_state.json +0 -0
  50. checkpoint-400/training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: tlrm/Q25-1.5B-UC
3
+ library_name: transformers
4
+ tags:
5
+ - generated_from_trainer
6
+ licence: license
7
+ ---
8
+
9
+ # Model Card for None
10
+
11
+ This model is a fine-tuned version of [tlrm/Q25-1.5B-UC](https://huggingface.co/tlrm/Q25-1.5B-UC).
12
+ It has been trained using [TRL](https://github.com/huggingface/trl).
13
+
14
+ ## Quick start
15
+
16
+ ```python
17
+ from transformers import pipeline
18
+
19
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
20
+ generator = pipeline("text-generation", model="None", device="cuda")
21
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
22
+ print(output["generated_text"])
23
+ ```
24
+
25
+ ## Training procedure
26
+
27
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jiwooya1000/RMVar-Submission/runs/p38trt3o)
28
+
29
+
30
+ This model was trained with Reward.
31
+
32
+ ### Framework versions
33
+
34
+ - TRL: 0.13.0
35
+ - Transformers: 4.48.0
36
+ - Pytorch: 2.5.1
37
+ - Datasets: 3.2.0
38
+ - Tokenizers: 0.21.0
39
+
40
+ ## Citations
41
+
42
+
43
+
44
+ Cite TRL as:
45
+
46
+ ```bibtex
47
+ @misc{vonwerra2022trl,
48
+ title = {{TRL: Transformer Reinforcement Learning}},
49
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
50
+ year = 2020,
51
+ journal = {GitHub repository},
52
+ publisher = {GitHub},
53
+ howpublished = {\url{https://github.com/huggingface/trl}}
54
+ }
55
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-100/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-100/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tlrm/Q25-1.5B-UC",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 8960,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 28,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 28,
24
+ "num_key_value_heads": 2,
25
+ "pad_token_id": 151643,
26
+ "rms_norm_eps": 1e-06,
27
+ "rope_scaling": null,
28
+ "rope_theta": 1000000.0,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.48.0",
33
+ "use_cache": false,
34
+ "use_mrope": false,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ }
checkpoint-100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25c21718922862064a1efc84bad2faff1b977abbab9604b4526eac6bbf57a271
3
+ size 4996670464
checkpoint-100/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fb6ad670028ab179e9dddb84e1150f76798028e257ff634ced4f7b17e403f3a
3
+ size 1178231192
checkpoint-100/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6174863360
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.norm.weight": "model-00002-of-00002.safetensors",
344
+ "score.weight": "model-00002-of-00002.safetensors"
345
+ }
346
+ }
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,1333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.25,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "Batch Mean": 0.8096684217453003,
13
+ "accuracy": 0.625,
14
+ "epoch": 0,
15
+ "step": 0
16
+ },
17
+ {
18
+ "epoch": 0.0025,
19
+ "grad_norm": 9.15977954864502,
20
+ "learning_rate": 2.5000000000000004e-07,
21
+ "loss": 0.6694,
22
+ "step": 1
23
+ },
24
+ {
25
+ "Batch Mean": 0.8517913818359375,
26
+ "accuracy": 0.5234375,
27
+ "epoch": 0.0025,
28
+ "step": 1
29
+ },
30
+ {
31
+ "epoch": 0.005,
32
+ "grad_norm": 9.550761222839355,
33
+ "learning_rate": 5.000000000000001e-07,
34
+ "loss": 0.7001,
35
+ "step": 2
36
+ },
37
+ {
38
+ "Batch Mean": 0.8251190185546875,
39
+ "accuracy": 0.4921875,
40
+ "epoch": 0.005,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.0075,
45
+ "grad_norm": 10.096807479858398,
46
+ "learning_rate": 7.5e-07,
47
+ "loss": 0.7277,
48
+ "step": 3
49
+ },
50
+ {
51
+ "Batch Mean": 0.8156070709228516,
52
+ "accuracy": 0.515625,
53
+ "epoch": 0.0075,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.01,
58
+ "grad_norm": 10.845061302185059,
59
+ "learning_rate": 1.0000000000000002e-06,
60
+ "loss": 0.7116,
61
+ "step": 4
62
+ },
63
+ {
64
+ "Batch Mean": 0.772618293762207,
65
+ "accuracy": 0.53125,
66
+ "epoch": 0.01,
67
+ "step": 4
68
+ },
69
+ {
70
+ "epoch": 0.0125,
71
+ "grad_norm": 10.683115005493164,
72
+ "learning_rate": 1.25e-06,
73
+ "loss": 0.7074,
74
+ "step": 5
75
+ },
76
+ {
77
+ "Batch Mean": 0.7320594787597656,
78
+ "accuracy": 0.5390625,
79
+ "epoch": 0.0125,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.015,
84
+ "grad_norm": 9.102219581604004,
85
+ "learning_rate": 1.5e-06,
86
+ "loss": 0.6964,
87
+ "step": 6
88
+ },
89
+ {
90
+ "Batch Mean": 0.639228105545044,
91
+ "accuracy": 0.5703125,
92
+ "epoch": 0.015,
93
+ "step": 6
94
+ },
95
+ {
96
+ "epoch": 0.0175,
97
+ "grad_norm": 10.126181602478027,
98
+ "learning_rate": 1.75e-06,
99
+ "loss": 0.6981,
100
+ "step": 7
101
+ },
102
+ {
103
+ "Batch Mean": 0.28215163946151733,
104
+ "accuracy": 0.6015625,
105
+ "epoch": 0.0175,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.02,
110
+ "grad_norm": 6.3671040534973145,
111
+ "learning_rate": 2.0000000000000003e-06,
112
+ "loss": 0.6668,
113
+ "step": 8
114
+ },
115
+ {
116
+ "Batch Mean": 0.10402120649814606,
117
+ "accuracy": 0.5234375,
118
+ "epoch": 0.02,
119
+ "step": 8
120
+ },
121
+ {
122
+ "epoch": 0.0225,
123
+ "grad_norm": 6.053694248199463,
124
+ "learning_rate": 2.25e-06,
125
+ "loss": 0.6907,
126
+ "step": 9
127
+ },
128
+ {
129
+ "Batch Mean": -0.794627845287323,
130
+ "accuracy": 0.5234375,
131
+ "epoch": 0.0225,
132
+ "step": 9
133
+ },
134
+ {
135
+ "epoch": 0.025,
136
+ "grad_norm": 9.284210205078125,
137
+ "learning_rate": 2.5e-06,
138
+ "loss": 0.6879,
139
+ "step": 10
140
+ },
141
+ {
142
+ "Batch Mean": -1.1373445987701416,
143
+ "accuracy": 0.59375,
144
+ "epoch": 0.025,
145
+ "step": 10
146
+ },
147
+ {
148
+ "epoch": 0.0275,
149
+ "grad_norm": 13.110421180725098,
150
+ "learning_rate": 2.7500000000000004e-06,
151
+ "loss": 0.6954,
152
+ "step": 11
153
+ },
154
+ {
155
+ "Batch Mean": -1.2041501998901367,
156
+ "accuracy": 0.59375,
157
+ "epoch": 0.0275,
158
+ "step": 11
159
+ },
160
+ {
161
+ "epoch": 0.03,
162
+ "grad_norm": 13.619694709777832,
163
+ "learning_rate": 3e-06,
164
+ "loss": 0.7004,
165
+ "step": 12
166
+ },
167
+ {
168
+ "Batch Mean": -1.1390533447265625,
169
+ "accuracy": 0.65625,
170
+ "epoch": 0.03,
171
+ "step": 12
172
+ },
173
+ {
174
+ "epoch": 0.0325,
175
+ "grad_norm": 16.698774337768555,
176
+ "learning_rate": 3.2500000000000002e-06,
177
+ "loss": 0.6691,
178
+ "step": 13
179
+ },
180
+ {
181
+ "Batch Mean": -1.2006721496582031,
182
+ "accuracy": 0.6953125,
183
+ "epoch": 0.0325,
184
+ "step": 13
185
+ },
186
+ {
187
+ "epoch": 0.035,
188
+ "grad_norm": 13.031152725219727,
189
+ "learning_rate": 3.5e-06,
190
+ "loss": 0.6749,
191
+ "step": 14
192
+ },
193
+ {
194
+ "Batch Mean": -1.1018962860107422,
195
+ "accuracy": 0.6484375,
196
+ "epoch": 0.035,
197
+ "step": 14
198
+ },
199
+ {
200
+ "epoch": 0.0375,
201
+ "grad_norm": 11.913775444030762,
202
+ "learning_rate": 3.7500000000000005e-06,
203
+ "loss": 0.6517,
204
+ "step": 15
205
+ },
206
+ {
207
+ "Batch Mean": -0.8371965289115906,
208
+ "accuracy": 0.65625,
209
+ "epoch": 0.0375,
210
+ "step": 15
211
+ },
212
+ {
213
+ "epoch": 0.04,
214
+ "grad_norm": 9.776491165161133,
215
+ "learning_rate": 4.000000000000001e-06,
216
+ "loss": 0.6435,
217
+ "step": 16
218
+ },
219
+ {
220
+ "Batch Mean": -0.25420451164245605,
221
+ "accuracy": 0.65625,
222
+ "epoch": 0.04,
223
+ "step": 16
224
+ },
225
+ {
226
+ "epoch": 0.0425,
227
+ "grad_norm": 5.094934940338135,
228
+ "learning_rate": 4.25e-06,
229
+ "loss": 0.6352,
230
+ "step": 17
231
+ },
232
+ {
233
+ "Batch Mean": 0.45112472772598267,
234
+ "accuracy": 0.625,
235
+ "epoch": 0.0425,
236
+ "step": 17
237
+ },
238
+ {
239
+ "epoch": 0.045,
240
+ "grad_norm": 6.203393459320068,
241
+ "learning_rate": 4.5e-06,
242
+ "loss": 0.6305,
243
+ "step": 18
244
+ },
245
+ {
246
+ "Batch Mean": 1.0782840251922607,
247
+ "accuracy": 0.640625,
248
+ "epoch": 0.045,
249
+ "step": 18
250
+ },
251
+ {
252
+ "epoch": 0.0475,
253
+ "grad_norm": 11.932191848754883,
254
+ "learning_rate": 4.75e-06,
255
+ "loss": 0.6401,
256
+ "step": 19
257
+ },
258
+ {
259
+ "Batch Mean": 1.6000666618347168,
260
+ "accuracy": 0.65625,
261
+ "epoch": 0.0475,
262
+ "step": 19
263
+ },
264
+ {
265
+ "epoch": 0.05,
266
+ "grad_norm": 18.466459274291992,
267
+ "learning_rate": 5e-06,
268
+ "loss": 0.6928,
269
+ "step": 20
270
+ },
271
+ {
272
+ "Batch Mean": 1.6292922496795654,
273
+ "accuracy": 0.65625,
274
+ "epoch": 0.05,
275
+ "step": 20
276
+ },
277
+ {
278
+ "epoch": 0.0525,
279
+ "grad_norm": 18.958446502685547,
280
+ "learning_rate": 4.986842105263158e-06,
281
+ "loss": 0.6456,
282
+ "step": 21
283
+ },
284
+ {
285
+ "Batch Mean": 1.0992889404296875,
286
+ "accuracy": 0.7109375,
287
+ "epoch": 0.0525,
288
+ "step": 21
289
+ },
290
+ {
291
+ "epoch": 0.055,
292
+ "grad_norm": 12.98255443572998,
293
+ "learning_rate": 4.973684210526316e-06,
294
+ "loss": 0.606,
295
+ "step": 22
296
+ },
297
+ {
298
+ "Batch Mean": 0.33066248893737793,
299
+ "accuracy": 0.703125,
300
+ "epoch": 0.055,
301
+ "step": 22
302
+ },
303
+ {
304
+ "epoch": 0.0575,
305
+ "grad_norm": 6.1022725105285645,
306
+ "learning_rate": 4.960526315789474e-06,
307
+ "loss": 0.5807,
308
+ "step": 23
309
+ },
310
+ {
311
+ "Batch Mean": -0.7870486974716187,
312
+ "accuracy": 0.7109375,
313
+ "epoch": 0.0575,
314
+ "step": 23
315
+ },
316
+ {
317
+ "epoch": 0.06,
318
+ "grad_norm": 9.311738014221191,
319
+ "learning_rate": 4.947368421052632e-06,
320
+ "loss": 0.5331,
321
+ "step": 24
322
+ },
323
+ {
324
+ "Batch Mean": -1.2838190793991089,
325
+ "accuracy": 0.6484375,
326
+ "epoch": 0.06,
327
+ "step": 24
328
+ },
329
+ {
330
+ "epoch": 0.0625,
331
+ "grad_norm": 13.955443382263184,
332
+ "learning_rate": 4.9342105263157895e-06,
333
+ "loss": 0.6186,
334
+ "step": 25
335
+ },
336
+ {
337
+ "Batch Mean": -1.324391484260559,
338
+ "accuracy": 0.6953125,
339
+ "epoch": 0.0625,
340
+ "step": 25
341
+ },
342
+ {
343
+ "epoch": 0.065,
344
+ "grad_norm": 14.612135887145996,
345
+ "learning_rate": 4.921052631578948e-06,
346
+ "loss": 0.5325,
347
+ "step": 26
348
+ },
349
+ {
350
+ "Batch Mean": -0.7885305881500244,
351
+ "accuracy": 0.7109375,
352
+ "epoch": 0.065,
353
+ "step": 26
354
+ },
355
+ {
356
+ "epoch": 0.0675,
357
+ "grad_norm": 9.373554229736328,
358
+ "learning_rate": 4.907894736842106e-06,
359
+ "loss": 0.5549,
360
+ "step": 27
361
+ },
362
+ {
363
+ "Batch Mean": -0.25717926025390625,
364
+ "accuracy": 0.6953125,
365
+ "epoch": 0.0675,
366
+ "step": 27
367
+ },
368
+ {
369
+ "epoch": 0.07,
370
+ "grad_norm": 5.559288501739502,
371
+ "learning_rate": 4.894736842105264e-06,
372
+ "loss": 0.572,
373
+ "step": 28
374
+ },
375
+ {
376
+ "Batch Mean": 0.7993221282958984,
377
+ "accuracy": 0.6171875,
378
+ "epoch": 0.07,
379
+ "step": 28
380
+ },
381
+ {
382
+ "epoch": 0.0725,
383
+ "grad_norm": 10.778632164001465,
384
+ "learning_rate": 4.881578947368422e-06,
385
+ "loss": 0.6806,
386
+ "step": 29
387
+ },
388
+ {
389
+ "Batch Mean": 1.2803305387496948,
390
+ "accuracy": 0.6796875,
391
+ "epoch": 0.0725,
392
+ "step": 29
393
+ },
394
+ {
395
+ "epoch": 0.075,
396
+ "grad_norm": 14.314054489135742,
397
+ "learning_rate": 4.8684210526315795e-06,
398
+ "loss": 0.641,
399
+ "step": 30
400
+ },
401
+ {
402
+ "Batch Mean": 1.1847546100616455,
403
+ "accuracy": 0.7890625,
404
+ "epoch": 0.075,
405
+ "step": 30
406
+ },
407
+ {
408
+ "epoch": 0.0775,
409
+ "grad_norm": 12.86508846282959,
410
+ "learning_rate": 4.855263157894737e-06,
411
+ "loss": 0.5118,
412
+ "step": 31
413
+ },
414
+ {
415
+ "Batch Mean": 0.7971279621124268,
416
+ "accuracy": 0.734375,
417
+ "epoch": 0.0775,
418
+ "step": 31
419
+ },
420
+ {
421
+ "epoch": 0.08,
422
+ "grad_norm": 8.987775802612305,
423
+ "learning_rate": 4.842105263157895e-06,
424
+ "loss": 0.5508,
425
+ "step": 32
426
+ },
427
+ {
428
+ "Batch Mean": -0.12238264083862305,
429
+ "accuracy": 0.671875,
430
+ "epoch": 0.08,
431
+ "step": 32
432
+ },
433
+ {
434
+ "epoch": 0.0825,
435
+ "grad_norm": 4.265674591064453,
436
+ "learning_rate": 4.828947368421053e-06,
437
+ "loss": 0.5533,
438
+ "step": 33
439
+ },
440
+ {
441
+ "Batch Mean": -0.7733749151229858,
442
+ "accuracy": 0.7265625,
443
+ "epoch": 0.0825,
444
+ "step": 33
445
+ },
446
+ {
447
+ "epoch": 0.085,
448
+ "grad_norm": 9.074788093566895,
449
+ "learning_rate": 4.815789473684211e-06,
450
+ "loss": 0.5455,
451
+ "step": 34
452
+ },
453
+ {
454
+ "Batch Mean": -0.9033082723617554,
455
+ "accuracy": 0.7578125,
456
+ "epoch": 0.085,
457
+ "step": 34
458
+ },
459
+ {
460
+ "epoch": 0.0875,
461
+ "grad_norm": 10.331607818603516,
462
+ "learning_rate": 4.802631578947369e-06,
463
+ "loss": 0.5539,
464
+ "step": 35
465
+ },
466
+ {
467
+ "Batch Mean": -0.5780456066131592,
468
+ "accuracy": 0.7265625,
469
+ "epoch": 0.0875,
470
+ "step": 35
471
+ },
472
+ {
473
+ "epoch": 0.09,
474
+ "grad_norm": 7.254377365112305,
475
+ "learning_rate": 4.789473684210527e-06,
476
+ "loss": 0.547,
477
+ "step": 36
478
+ },
479
+ {
480
+ "Batch Mean": 0.09664157032966614,
481
+ "accuracy": 0.6953125,
482
+ "epoch": 0.09,
483
+ "step": 36
484
+ },
485
+ {
486
+ "epoch": 0.0925,
487
+ "grad_norm": 3.9853391647338867,
488
+ "learning_rate": 4.7763157894736844e-06,
489
+ "loss": 0.5451,
490
+ "step": 37
491
+ },
492
+ {
493
+ "Batch Mean": 0.5406360626220703,
494
+ "accuracy": 0.7265625,
495
+ "epoch": 0.0925,
496
+ "step": 37
497
+ },
498
+ {
499
+ "epoch": 0.095,
500
+ "grad_norm": 7.308631896972656,
501
+ "learning_rate": 4.763157894736842e-06,
502
+ "loss": 0.5313,
503
+ "step": 38
504
+ },
505
+ {
506
+ "Batch Mean": 0.6023058891296387,
507
+ "accuracy": 0.7890625,
508
+ "epoch": 0.095,
509
+ "step": 38
510
+ },
511
+ {
512
+ "epoch": 0.0975,
513
+ "grad_norm": 7.4278717041015625,
514
+ "learning_rate": 4.75e-06,
515
+ "loss": 0.5145,
516
+ "step": 39
517
+ },
518
+ {
519
+ "Batch Mean": 0.23680943250656128,
520
+ "accuracy": 0.7890625,
521
+ "epoch": 0.0975,
522
+ "step": 39
523
+ },
524
+ {
525
+ "epoch": 0.1,
526
+ "grad_norm": 5.057112693786621,
527
+ "learning_rate": 4.736842105263158e-06,
528
+ "loss": 0.4793,
529
+ "step": 40
530
+ },
531
+ {
532
+ "Batch Mean": -0.2819175720214844,
533
+ "accuracy": 0.75,
534
+ "epoch": 0.1,
535
+ "step": 40
536
+ },
537
+ {
538
+ "epoch": 0.1025,
539
+ "grad_norm": 5.986076831817627,
540
+ "learning_rate": 4.723684210526316e-06,
541
+ "loss": 0.4989,
542
+ "step": 41
543
+ },
544
+ {
545
+ "Batch Mean": -0.2952081263065338,
546
+ "accuracy": 0.765625,
547
+ "epoch": 0.1025,
548
+ "step": 41
549
+ },
550
+ {
551
+ "epoch": 0.105,
552
+ "grad_norm": 6.123879432678223,
553
+ "learning_rate": 4.710526315789474e-06,
554
+ "loss": 0.4959,
555
+ "step": 42
556
+ },
557
+ {
558
+ "Batch Mean": -0.5327777862548828,
559
+ "accuracy": 0.8359375,
560
+ "epoch": 0.105,
561
+ "step": 42
562
+ },
563
+ {
564
+ "epoch": 0.1075,
565
+ "grad_norm": 7.773658752441406,
566
+ "learning_rate": 4.697368421052632e-06,
567
+ "loss": 0.4501,
568
+ "step": 43
569
+ },
570
+ {
571
+ "Batch Mean": -0.00808095932006836,
572
+ "accuracy": 0.7265625,
573
+ "epoch": 0.1075,
574
+ "step": 43
575
+ },
576
+ {
577
+ "epoch": 0.11,
578
+ "grad_norm": 6.165060520172119,
579
+ "learning_rate": 4.68421052631579e-06,
580
+ "loss": 0.4952,
581
+ "step": 44
582
+ },
583
+ {
584
+ "Batch Mean": 0.23638486862182617,
585
+ "accuracy": 0.7109375,
586
+ "epoch": 0.11,
587
+ "step": 44
588
+ },
589
+ {
590
+ "epoch": 0.1125,
591
+ "grad_norm": 6.963595390319824,
592
+ "learning_rate": 4.671052631578948e-06,
593
+ "loss": 0.5261,
594
+ "step": 45
595
+ },
596
+ {
597
+ "Batch Mean": 0.07831740379333496,
598
+ "accuracy": 0.8125,
599
+ "epoch": 0.1125,
600
+ "step": 45
601
+ },
602
+ {
603
+ "epoch": 0.115,
604
+ "grad_norm": 5.393492221832275,
605
+ "learning_rate": 4.657894736842106e-06,
606
+ "loss": 0.405,
607
+ "step": 46
608
+ },
609
+ {
610
+ "Batch Mean": 0.10195636749267578,
611
+ "accuracy": 0.75,
612
+ "epoch": 0.115,
613
+ "step": 46
614
+ },
615
+ {
616
+ "epoch": 0.1175,
617
+ "grad_norm": 9.352888107299805,
618
+ "learning_rate": 4.6447368421052635e-06,
619
+ "loss": 0.5726,
620
+ "step": 47
621
+ },
622
+ {
623
+ "Batch Mean": 0.4460281729698181,
624
+ "accuracy": 0.7578125,
625
+ "epoch": 0.1175,
626
+ "step": 47
627
+ },
628
+ {
629
+ "epoch": 0.12,
630
+ "grad_norm": 9.130428314208984,
631
+ "learning_rate": 4.631578947368421e-06,
632
+ "loss": 0.5347,
633
+ "step": 48
634
+ },
635
+ {
636
+ "Batch Mean": -0.2610776424407959,
637
+ "accuracy": 0.796875,
638
+ "epoch": 0.12,
639
+ "step": 48
640
+ },
641
+ {
642
+ "epoch": 0.1225,
643
+ "grad_norm": 6.863037586212158,
644
+ "learning_rate": 4.618421052631579e-06,
645
+ "loss": 0.4456,
646
+ "step": 49
647
+ },
648
+ {
649
+ "Batch Mean": -0.19384944438934326,
650
+ "accuracy": 0.6328125,
651
+ "epoch": 0.1225,
652
+ "step": 49
653
+ },
654
+ {
655
+ "epoch": 0.125,
656
+ "grad_norm": 6.617422103881836,
657
+ "learning_rate": 4.605263157894737e-06,
658
+ "loss": 0.5905,
659
+ "step": 50
660
+ },
661
+ {
662
+ "Batch Mean": -0.4514150619506836,
663
+ "accuracy": 0.7890625,
664
+ "epoch": 0.125,
665
+ "step": 50
666
+ },
667
+ {
668
+ "epoch": 0.1275,
669
+ "grad_norm": 7.564980506896973,
670
+ "learning_rate": 4.592105263157895e-06,
671
+ "loss": 0.4885,
672
+ "step": 51
673
+ },
674
+ {
675
+ "Batch Mean": -0.003515481948852539,
676
+ "accuracy": 0.734375,
677
+ "epoch": 0.1275,
678
+ "step": 51
679
+ },
680
+ {
681
+ "epoch": 0.13,
682
+ "grad_norm": 5.258878707885742,
683
+ "learning_rate": 4.578947368421053e-06,
684
+ "loss": 0.5032,
685
+ "step": 52
686
+ },
687
+ {
688
+ "Batch Mean": -0.10907495021820068,
689
+ "accuracy": 0.71875,
690
+ "epoch": 0.13,
691
+ "step": 52
692
+ },
693
+ {
694
+ "epoch": 0.1325,
695
+ "grad_norm": 5.931639194488525,
696
+ "learning_rate": 4.565789473684211e-06,
697
+ "loss": 0.542,
698
+ "step": 53
699
+ },
700
+ {
701
+ "Batch Mean": 0.46248769760131836,
702
+ "accuracy": 0.7890625,
703
+ "epoch": 0.1325,
704
+ "step": 53
705
+ },
706
+ {
707
+ "epoch": 0.135,
708
+ "grad_norm": 7.1796112060546875,
709
+ "learning_rate": 4.552631578947369e-06,
710
+ "loss": 0.4685,
711
+ "step": 54
712
+ },
713
+ {
714
+ "Batch Mean": 0.1234641969203949,
715
+ "accuracy": 0.7265625,
716
+ "epoch": 0.135,
717
+ "step": 54
718
+ },
719
+ {
720
+ "epoch": 0.1375,
721
+ "grad_norm": 6.273733139038086,
722
+ "learning_rate": 4.539473684210527e-06,
723
+ "loss": 0.4989,
724
+ "step": 55
725
+ },
726
+ {
727
+ "Batch Mean": -0.15052831172943115,
728
+ "accuracy": 0.78125,
729
+ "epoch": 0.1375,
730
+ "step": 55
731
+ },
732
+ {
733
+ "epoch": 0.14,
734
+ "grad_norm": 5.630648612976074,
735
+ "learning_rate": 4.526315789473685e-06,
736
+ "loss": 0.4518,
737
+ "step": 56
738
+ },
739
+ {
740
+ "Batch Mean": 0.10203218460083008,
741
+ "accuracy": 0.75,
742
+ "epoch": 0.14,
743
+ "step": 56
744
+ },
745
+ {
746
+ "epoch": 0.1425,
747
+ "grad_norm": 5.465209484100342,
748
+ "learning_rate": 4.513157894736843e-06,
749
+ "loss": 0.4775,
750
+ "step": 57
751
+ },
752
+ {
753
+ "Batch Mean": -0.2146952748298645,
754
+ "accuracy": 0.7578125,
755
+ "epoch": 0.1425,
756
+ "step": 57
757
+ },
758
+ {
759
+ "epoch": 0.145,
760
+ "grad_norm": 5.516883373260498,
761
+ "learning_rate": 4.5e-06,
762
+ "loss": 0.4672,
763
+ "step": 58
764
+ },
765
+ {
766
+ "Batch Mean": 0.39426422119140625,
767
+ "accuracy": 0.7734375,
768
+ "epoch": 0.145,
769
+ "step": 58
770
+ },
771
+ {
772
+ "epoch": 0.1475,
773
+ "grad_norm": 6.986379146575928,
774
+ "learning_rate": 4.4868421052631584e-06,
775
+ "loss": 0.4851,
776
+ "step": 59
777
+ },
778
+ {
779
+ "Batch Mean": 0.1964409053325653,
780
+ "accuracy": 0.75,
781
+ "epoch": 0.1475,
782
+ "step": 59
783
+ },
784
+ {
785
+ "epoch": 0.15,
786
+ "grad_norm": 6.413231372833252,
787
+ "learning_rate": 4.473684210526316e-06,
788
+ "loss": 0.5073,
789
+ "step": 60
790
+ },
791
+ {
792
+ "Batch Mean": -0.21541327238082886,
793
+ "accuracy": 0.7890625,
794
+ "epoch": 0.15,
795
+ "step": 60
796
+ },
797
+ {
798
+ "epoch": 0.1525,
799
+ "grad_norm": 5.495061874389648,
800
+ "learning_rate": 4.460526315789474e-06,
801
+ "loss": 0.4751,
802
+ "step": 61
803
+ },
804
+ {
805
+ "Batch Mean": -0.3059917688369751,
806
+ "accuracy": 0.7890625,
807
+ "epoch": 0.1525,
808
+ "step": 61
809
+ },
810
+ {
811
+ "epoch": 0.155,
812
+ "grad_norm": 6.379850387573242,
813
+ "learning_rate": 4.447368421052632e-06,
814
+ "loss": 0.4679,
815
+ "step": 62
816
+ },
817
+ {
818
+ "Batch Mean": -0.5860270261764526,
819
+ "accuracy": 0.8046875,
820
+ "epoch": 0.155,
821
+ "step": 62
822
+ },
823
+ {
824
+ "epoch": 0.1575,
825
+ "grad_norm": 8.42182731628418,
826
+ "learning_rate": 4.43421052631579e-06,
827
+ "loss": 0.4152,
828
+ "step": 63
829
+ },
830
+ {
831
+ "Batch Mean": 0.14216375350952148,
832
+ "accuracy": 0.7578125,
833
+ "epoch": 0.1575,
834
+ "step": 63
835
+ },
836
+ {
837
+ "epoch": 0.16,
838
+ "grad_norm": 6.759493827819824,
839
+ "learning_rate": 4.4210526315789476e-06,
840
+ "loss": 0.4852,
841
+ "step": 64
842
+ },
843
+ {
844
+ "Batch Mean": 0.3515692353248596,
845
+ "accuracy": 0.796875,
846
+ "epoch": 0.16,
847
+ "step": 64
848
+ },
849
+ {
850
+ "epoch": 0.1625,
851
+ "grad_norm": 7.567401885986328,
852
+ "learning_rate": 4.407894736842105e-06,
853
+ "loss": 0.4449,
854
+ "step": 65
855
+ },
856
+ {
857
+ "Batch Mean": 0.281324565410614,
858
+ "accuracy": 0.765625,
859
+ "epoch": 0.1625,
860
+ "step": 65
861
+ },
862
+ {
863
+ "epoch": 0.165,
864
+ "grad_norm": 7.912868022918701,
865
+ "learning_rate": 4.394736842105263e-06,
866
+ "loss": 0.5717,
867
+ "step": 66
868
+ },
869
+ {
870
+ "Batch Mean": 0.07387387752532959,
871
+ "accuracy": 0.796875,
872
+ "epoch": 0.165,
873
+ "step": 66
874
+ },
875
+ {
876
+ "epoch": 0.1675,
877
+ "grad_norm": 5.737614631652832,
878
+ "learning_rate": 4.381578947368421e-06,
879
+ "loss": 0.4532,
880
+ "step": 67
881
+ },
882
+ {
883
+ "Batch Mean": -0.45137548446655273,
884
+ "accuracy": 0.7734375,
885
+ "epoch": 0.1675,
886
+ "step": 67
887
+ },
888
+ {
889
+ "epoch": 0.17,
890
+ "grad_norm": 9.204909324645996,
891
+ "learning_rate": 4.368421052631579e-06,
892
+ "loss": 0.501,
893
+ "step": 68
894
+ },
895
+ {
896
+ "Batch Mean": -0.12238574028015137,
897
+ "accuracy": 0.828125,
898
+ "epoch": 0.17,
899
+ "step": 68
900
+ },
901
+ {
902
+ "epoch": 0.1725,
903
+ "grad_norm": 6.6219162940979,
904
+ "learning_rate": 4.3552631578947375e-06,
905
+ "loss": 0.416,
906
+ "step": 69
907
+ },
908
+ {
909
+ "Batch Mean": 0.06974506378173828,
910
+ "accuracy": 0.78125,
911
+ "epoch": 0.1725,
912
+ "step": 69
913
+ },
914
+ {
915
+ "epoch": 0.175,
916
+ "grad_norm": 5.526142120361328,
917
+ "learning_rate": 4.342105263157895e-06,
918
+ "loss": 0.4364,
919
+ "step": 70
920
+ },
921
+ {
922
+ "Batch Mean": 0.3401278257369995,
923
+ "accuracy": 0.8359375,
924
+ "epoch": 0.175,
925
+ "step": 70
926
+ },
927
+ {
928
+ "epoch": 0.1775,
929
+ "grad_norm": 6.567529678344727,
930
+ "learning_rate": 4.328947368421053e-06,
931
+ "loss": 0.4396,
932
+ "step": 71
933
+ },
934
+ {
935
+ "Batch Mean": -0.12450069189071655,
936
+ "accuracy": 0.75,
937
+ "epoch": 0.1775,
938
+ "step": 71
939
+ },
940
+ {
941
+ "epoch": 0.18,
942
+ "grad_norm": 6.054138660430908,
943
+ "learning_rate": 4.315789473684211e-06,
944
+ "loss": 0.4604,
945
+ "step": 72
946
+ },
947
+ {
948
+ "Batch Mean": 0.0036773681640625,
949
+ "accuracy": 0.7890625,
950
+ "epoch": 0.18,
951
+ "step": 72
952
+ },
953
+ {
954
+ "epoch": 0.1825,
955
+ "grad_norm": 6.112196445465088,
956
+ "learning_rate": 4.302631578947369e-06,
957
+ "loss": 0.4091,
958
+ "step": 73
959
+ },
960
+ {
961
+ "Batch Mean": -0.3432164192199707,
962
+ "accuracy": 0.7890625,
963
+ "epoch": 0.1825,
964
+ "step": 73
965
+ },
966
+ {
967
+ "epoch": 0.185,
968
+ "grad_norm": 6.806588649749756,
969
+ "learning_rate": 4.289473684210527e-06,
970
+ "loss": 0.4194,
971
+ "step": 74
972
+ },
973
+ {
974
+ "Batch Mean": -0.10890483856201172,
975
+ "accuracy": 0.671875,
976
+ "epoch": 0.185,
977
+ "step": 74
978
+ },
979
+ {
980
+ "epoch": 0.1875,
981
+ "grad_norm": 7.000553131103516,
982
+ "learning_rate": 4.276315789473684e-06,
983
+ "loss": 0.5318,
984
+ "step": 75
985
+ },
986
+ {
987
+ "Batch Mean": 0.6419280171394348,
988
+ "accuracy": 0.7265625,
989
+ "epoch": 0.1875,
990
+ "step": 75
991
+ },
992
+ {
993
+ "epoch": 0.19,
994
+ "grad_norm": 8.422764778137207,
995
+ "learning_rate": 4.2631578947368425e-06,
996
+ "loss": 0.4539,
997
+ "step": 76
998
+ },
999
+ {
1000
+ "Batch Mean": 0.28451067209243774,
1001
+ "accuracy": 0.7734375,
1002
+ "epoch": 0.19,
1003
+ "step": 76
1004
+ },
1005
+ {
1006
+ "epoch": 0.1925,
1007
+ "grad_norm": 6.512566566467285,
1008
+ "learning_rate": 4.25e-06,
1009
+ "loss": 0.4522,
1010
+ "step": 77
1011
+ },
1012
+ {
1013
+ "Batch Mean": -0.07123541831970215,
1014
+ "accuracy": 0.8125,
1015
+ "epoch": 0.1925,
1016
+ "step": 77
1017
+ },
1018
+ {
1019
+ "epoch": 0.195,
1020
+ "grad_norm": 6.979062080383301,
1021
+ "learning_rate": 4.236842105263158e-06,
1022
+ "loss": 0.4827,
1023
+ "step": 78
1024
+ },
1025
+ {
1026
+ "Batch Mean": -0.2889130115509033,
1027
+ "accuracy": 0.71875,
1028
+ "epoch": 0.195,
1029
+ "step": 78
1030
+ },
1031
+ {
1032
+ "epoch": 0.1975,
1033
+ "grad_norm": 7.523491859436035,
1034
+ "learning_rate": 4.223684210526316e-06,
1035
+ "loss": 0.4501,
1036
+ "step": 79
1037
+ },
1038
+ {
1039
+ "Batch Mean": -0.2912619113922119,
1040
+ "accuracy": 0.8046875,
1041
+ "epoch": 0.1975,
1042
+ "step": 79
1043
+ },
1044
+ {
1045
+ "epoch": 0.2,
1046
+ "grad_norm": 6.1573662757873535,
1047
+ "learning_rate": 4.210526315789474e-06,
1048
+ "loss": 0.4537,
1049
+ "step": 80
1050
+ },
1051
+ {
1052
+ "Batch Mean": 0.07626897096633911,
1053
+ "accuracy": 0.84375,
1054
+ "epoch": 0.2,
1055
+ "step": 80
1056
+ },
1057
+ {
1058
+ "epoch": 0.2025,
1059
+ "grad_norm": 5.308783054351807,
1060
+ "learning_rate": 4.197368421052632e-06,
1061
+ "loss": 0.3777,
1062
+ "step": 81
1063
+ },
1064
+ {
1065
+ "Batch Mean": 0.44231414794921875,
1066
+ "accuracy": 0.78125,
1067
+ "epoch": 0.2025,
1068
+ "step": 81
1069
+ },
1070
+ {
1071
+ "epoch": 0.205,
1072
+ "grad_norm": 7.6725969314575195,
1073
+ "learning_rate": 4.18421052631579e-06,
1074
+ "loss": 0.4681,
1075
+ "step": 82
1076
+ },
1077
+ {
1078
+ "Batch Mean": 0.05066095292568207,
1079
+ "accuracy": 0.7734375,
1080
+ "epoch": 0.205,
1081
+ "step": 82
1082
+ },
1083
+ {
1084
+ "epoch": 0.2075,
1085
+ "grad_norm": 6.136054039001465,
1086
+ "learning_rate": 4.171052631578948e-06,
1087
+ "loss": 0.4111,
1088
+ "step": 83
1089
+ },
1090
+ {
1091
+ "Batch Mean": 0.11537289619445801,
1092
+ "accuracy": 0.8515625,
1093
+ "epoch": 0.2075,
1094
+ "step": 83
1095
+ },
1096
+ {
1097
+ "epoch": 0.21,
1098
+ "grad_norm": 5.31056022644043,
1099
+ "learning_rate": 4.157894736842106e-06,
1100
+ "loss": 0.345,
1101
+ "step": 84
1102
+ },
1103
+ {
1104
+ "Batch Mean": 0.05826067924499512,
1105
+ "accuracy": 0.734375,
1106
+ "epoch": 0.21,
1107
+ "step": 84
1108
+ },
1109
+ {
1110
+ "epoch": 0.2125,
1111
+ "grad_norm": 6.368407249450684,
1112
+ "learning_rate": 4.144736842105263e-06,
1113
+ "loss": 0.4834,
1114
+ "step": 85
1115
+ },
1116
+ {
1117
+ "Batch Mean": -0.05756664276123047,
1118
+ "accuracy": 0.75,
1119
+ "epoch": 0.2125,
1120
+ "step": 85
1121
+ },
1122
+ {
1123
+ "epoch": 0.215,
1124
+ "grad_norm": 7.063327312469482,
1125
+ "learning_rate": 4.1315789473684216e-06,
1126
+ "loss": 0.5013,
1127
+ "step": 86
1128
+ },
1129
+ {
1130
+ "Batch Mean": -0.08471214771270752,
1131
+ "accuracy": 0.8046875,
1132
+ "epoch": 0.215,
1133
+ "step": 86
1134
+ },
1135
+ {
1136
+ "epoch": 0.2175,
1137
+ "grad_norm": 6.508166313171387,
1138
+ "learning_rate": 4.118421052631579e-06,
1139
+ "loss": 0.4431,
1140
+ "step": 87
1141
+ },
1142
+ {
1143
+ "Batch Mean": -0.06070905923843384,
1144
+ "accuracy": 0.703125,
1145
+ "epoch": 0.2175,
1146
+ "step": 87
1147
+ },
1148
+ {
1149
+ "epoch": 0.22,
1150
+ "grad_norm": 7.8081583976745605,
1151
+ "learning_rate": 4.105263157894737e-06,
1152
+ "loss": 0.5481,
1153
+ "step": 88
1154
+ },
1155
+ {
1156
+ "Batch Mean": -0.15125751495361328,
1157
+ "accuracy": 0.8046875,
1158
+ "epoch": 0.22,
1159
+ "step": 88
1160
+ },
1161
+ {
1162
+ "epoch": 0.2225,
1163
+ "grad_norm": 5.806808948516846,
1164
+ "learning_rate": 4.092105263157895e-06,
1165
+ "loss": 0.3994,
1166
+ "step": 89
1167
+ },
1168
+ {
1169
+ "Batch Mean": -0.0017851591110229492,
1170
+ "accuracy": 0.828125,
1171
+ "epoch": 0.2225,
1172
+ "step": 89
1173
+ },
1174
+ {
1175
+ "epoch": 0.225,
1176
+ "grad_norm": 5.560466766357422,
1177
+ "learning_rate": 4.078947368421053e-06,
1178
+ "loss": 0.4,
1179
+ "step": 90
1180
+ },
1181
+ {
1182
+ "Batch Mean": 0.07748031616210938,
1183
+ "accuracy": 0.8046875,
1184
+ "epoch": 0.225,
1185
+ "step": 90
1186
+ },
1187
+ {
1188
+ "epoch": 0.2275,
1189
+ "grad_norm": 5.754173278808594,
1190
+ "learning_rate": 4.065789473684211e-06,
1191
+ "loss": 0.4019,
1192
+ "step": 91
1193
+ },
1194
+ {
1195
+ "Batch Mean": -0.24073825776576996,
1196
+ "accuracy": 0.78125,
1197
+ "epoch": 0.2275,
1198
+ "step": 91
1199
+ },
1200
+ {
1201
+ "epoch": 0.23,
1202
+ "grad_norm": 6.231720447540283,
1203
+ "learning_rate": 4.052631578947368e-06,
1204
+ "loss": 0.4585,
1205
+ "step": 92
1206
+ },
1207
+ {
1208
+ "Batch Mean": -0.45170480012893677,
1209
+ "accuracy": 0.75,
1210
+ "epoch": 0.23,
1211
+ "step": 92
1212
+ },
1213
+ {
1214
+ "epoch": 0.2325,
1215
+ "grad_norm": 7.313357353210449,
1216
+ "learning_rate": 4.0394736842105265e-06,
1217
+ "loss": 0.4762,
1218
+ "step": 93
1219
+ },
1220
+ {
1221
+ "Batch Mean": 0.024792194366455078,
1222
+ "accuracy": 0.796875,
1223
+ "epoch": 0.2325,
1224
+ "step": 93
1225
+ },
1226
+ {
1227
+ "epoch": 0.235,
1228
+ "grad_norm": 4.933104515075684,
1229
+ "learning_rate": 4.026315789473684e-06,
1230
+ "loss": 0.4138,
1231
+ "step": 94
1232
+ },
1233
+ {
1234
+ "Batch Mean": -0.02751898765563965,
1235
+ "accuracy": 0.7421875,
1236
+ "epoch": 0.235,
1237
+ "step": 94
1238
+ },
1239
+ {
1240
+ "epoch": 0.2375,
1241
+ "grad_norm": 5.39032506942749,
1242
+ "learning_rate": 4.013157894736842e-06,
1243
+ "loss": 0.4787,
1244
+ "step": 95
1245
+ },
1246
+ {
1247
+ "Batch Mean": 0.06753873825073242,
1248
+ "accuracy": 0.8203125,
1249
+ "epoch": 0.2375,
1250
+ "step": 95
1251
+ },
1252
+ {
1253
+ "epoch": 0.24,
1254
+ "grad_norm": 5.1791462898254395,
1255
+ "learning_rate": 4.000000000000001e-06,
1256
+ "loss": 0.4488,
1257
+ "step": 96
1258
+ },
1259
+ {
1260
+ "Batch Mean": 0.22616100311279297,
1261
+ "accuracy": 0.828125,
1262
+ "epoch": 0.24,
1263
+ "step": 96
1264
+ },
1265
+ {
1266
+ "epoch": 0.2425,
1267
+ "grad_norm": 5.300809383392334,
1268
+ "learning_rate": 3.986842105263158e-06,
1269
+ "loss": 0.4142,
1270
+ "step": 97
1271
+ },
1272
+ {
1273
+ "Batch Mean": -0.15787070989608765,
1274
+ "accuracy": 0.8515625,
1275
+ "epoch": 0.2425,
1276
+ "step": 97
1277
+ },
1278
+ {
1279
+ "epoch": 0.245,
1280
+ "grad_norm": 5.704384803771973,
1281
+ "learning_rate": 3.9736842105263165e-06,
1282
+ "loss": 0.3797,
1283
+ "step": 98
1284
+ },
1285
+ {
1286
+ "Batch Mean": 0.13187718391418457,
1287
+ "accuracy": 0.8046875,
1288
+ "epoch": 0.245,
1289
+ "step": 98
1290
+ },
1291
+ {
1292
+ "epoch": 0.2475,
1293
+ "grad_norm": 6.045483589172363,
1294
+ "learning_rate": 3.960526315789474e-06,
1295
+ "loss": 0.5195,
1296
+ "step": 99
1297
+ },
1298
+ {
1299
+ "Batch Mean": -0.08533608913421631,
1300
+ "accuracy": 0.8203125,
1301
+ "epoch": 0.2475,
1302
+ "step": 99
1303
+ },
1304
+ {
1305
+ "epoch": 0.25,
1306
+ "grad_norm": 4.997817516326904,
1307
+ "learning_rate": 3.947368421052632e-06,
1308
+ "loss": 0.3816,
1309
+ "step": 100
1310
+ }
1311
+ ],
1312
+ "logging_steps": 1,
1313
+ "max_steps": 400,
1314
+ "num_input_tokens_seen": 0,
1315
+ "num_train_epochs": 1,
1316
+ "save_steps": 100,
1317
+ "stateful_callbacks": {
1318
+ "TrainerControl": {
1319
+ "args": {
1320
+ "should_epoch_stop": false,
1321
+ "should_evaluate": false,
1322
+ "should_log": false,
1323
+ "should_save": true,
1324
+ "should_training_stop": false
1325
+ },
1326
+ "attributes": {}
1327
+ }
1328
+ },
1329
+ "total_flos": 0.0,
1330
+ "train_batch_size": 16,
1331
+ "trial_name": null,
1332
+ "trial_params": null
1333
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108253c2924ab960b742973fd9045c7f43b2d39e8229930aed15fd573ed1620a
3
+ size 5752
checkpoint-100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-200/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tlrm/Q25-1.5B-UC",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 8960,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 28,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 28,
24
+ "num_key_value_heads": 2,
25
+ "pad_token_id": 151643,
26
+ "rms_norm_eps": 1e-06,
27
+ "rope_scaling": null,
28
+ "rope_theta": 1000000.0,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.48.0",
33
+ "use_cache": false,
34
+ "use_mrope": false,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ }
checkpoint-200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f7a313fadbeaab077bf7642d9776d82daf5566fc279ce1957372387c8b487ca
3
+ size 4996670464
checkpoint-200/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03447a5a071bf6fde38bd5019c4a7ecc2e58591d1e8e860ebe20a08d9f646ca3
3
+ size 1178231192
checkpoint-200/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6174863360
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.norm.weight": "model-00002-of-00002.safetensors",
344
+ "score.weight": "model-00002-of-00002.safetensors"
345
+ }
346
+ }
checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,2633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "Batch Mean": 0.8096684217453003,
13
+ "accuracy": 0.625,
14
+ "epoch": 0,
15
+ "step": 0
16
+ },
17
+ {
18
+ "epoch": 0.0025,
19
+ "grad_norm": 9.15977954864502,
20
+ "learning_rate": 2.5000000000000004e-07,
21
+ "loss": 0.6694,
22
+ "step": 1
23
+ },
24
+ {
25
+ "Batch Mean": 0.8517913818359375,
26
+ "accuracy": 0.5234375,
27
+ "epoch": 0.0025,
28
+ "step": 1
29
+ },
30
+ {
31
+ "epoch": 0.005,
32
+ "grad_norm": 9.550761222839355,
33
+ "learning_rate": 5.000000000000001e-07,
34
+ "loss": 0.7001,
35
+ "step": 2
36
+ },
37
+ {
38
+ "Batch Mean": 0.8251190185546875,
39
+ "accuracy": 0.4921875,
40
+ "epoch": 0.005,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.0075,
45
+ "grad_norm": 10.096807479858398,
46
+ "learning_rate": 7.5e-07,
47
+ "loss": 0.7277,
48
+ "step": 3
49
+ },
50
+ {
51
+ "Batch Mean": 0.8156070709228516,
52
+ "accuracy": 0.515625,
53
+ "epoch": 0.0075,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.01,
58
+ "grad_norm": 10.845061302185059,
59
+ "learning_rate": 1.0000000000000002e-06,
60
+ "loss": 0.7116,
61
+ "step": 4
62
+ },
63
+ {
64
+ "Batch Mean": 0.772618293762207,
65
+ "accuracy": 0.53125,
66
+ "epoch": 0.01,
67
+ "step": 4
68
+ },
69
+ {
70
+ "epoch": 0.0125,
71
+ "grad_norm": 10.683115005493164,
72
+ "learning_rate": 1.25e-06,
73
+ "loss": 0.7074,
74
+ "step": 5
75
+ },
76
+ {
77
+ "Batch Mean": 0.7320594787597656,
78
+ "accuracy": 0.5390625,
79
+ "epoch": 0.0125,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.015,
84
+ "grad_norm": 9.102219581604004,
85
+ "learning_rate": 1.5e-06,
86
+ "loss": 0.6964,
87
+ "step": 6
88
+ },
89
+ {
90
+ "Batch Mean": 0.639228105545044,
91
+ "accuracy": 0.5703125,
92
+ "epoch": 0.015,
93
+ "step": 6
94
+ },
95
+ {
96
+ "epoch": 0.0175,
97
+ "grad_norm": 10.126181602478027,
98
+ "learning_rate": 1.75e-06,
99
+ "loss": 0.6981,
100
+ "step": 7
101
+ },
102
+ {
103
+ "Batch Mean": 0.28215163946151733,
104
+ "accuracy": 0.6015625,
105
+ "epoch": 0.0175,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.02,
110
+ "grad_norm": 6.3671040534973145,
111
+ "learning_rate": 2.0000000000000003e-06,
112
+ "loss": 0.6668,
113
+ "step": 8
114
+ },
115
+ {
116
+ "Batch Mean": 0.10402120649814606,
117
+ "accuracy": 0.5234375,
118
+ "epoch": 0.02,
119
+ "step": 8
120
+ },
121
+ {
122
+ "epoch": 0.0225,
123
+ "grad_norm": 6.053694248199463,
124
+ "learning_rate": 2.25e-06,
125
+ "loss": 0.6907,
126
+ "step": 9
127
+ },
128
+ {
129
+ "Batch Mean": -0.794627845287323,
130
+ "accuracy": 0.5234375,
131
+ "epoch": 0.0225,
132
+ "step": 9
133
+ },
134
+ {
135
+ "epoch": 0.025,
136
+ "grad_norm": 9.284210205078125,
137
+ "learning_rate": 2.5e-06,
138
+ "loss": 0.6879,
139
+ "step": 10
140
+ },
141
+ {
142
+ "Batch Mean": -1.1373445987701416,
143
+ "accuracy": 0.59375,
144
+ "epoch": 0.025,
145
+ "step": 10
146
+ },
147
+ {
148
+ "epoch": 0.0275,
149
+ "grad_norm": 13.110421180725098,
150
+ "learning_rate": 2.7500000000000004e-06,
151
+ "loss": 0.6954,
152
+ "step": 11
153
+ },
154
+ {
155
+ "Batch Mean": -1.2041501998901367,
156
+ "accuracy": 0.59375,
157
+ "epoch": 0.0275,
158
+ "step": 11
159
+ },
160
+ {
161
+ "epoch": 0.03,
162
+ "grad_norm": 13.619694709777832,
163
+ "learning_rate": 3e-06,
164
+ "loss": 0.7004,
165
+ "step": 12
166
+ },
167
+ {
168
+ "Batch Mean": -1.1390533447265625,
169
+ "accuracy": 0.65625,
170
+ "epoch": 0.03,
171
+ "step": 12
172
+ },
173
+ {
174
+ "epoch": 0.0325,
175
+ "grad_norm": 16.698774337768555,
176
+ "learning_rate": 3.2500000000000002e-06,
177
+ "loss": 0.6691,
178
+ "step": 13
179
+ },
180
+ {
181
+ "Batch Mean": -1.2006721496582031,
182
+ "accuracy": 0.6953125,
183
+ "epoch": 0.0325,
184
+ "step": 13
185
+ },
186
+ {
187
+ "epoch": 0.035,
188
+ "grad_norm": 13.031152725219727,
189
+ "learning_rate": 3.5e-06,
190
+ "loss": 0.6749,
191
+ "step": 14
192
+ },
193
+ {
194
+ "Batch Mean": -1.1018962860107422,
195
+ "accuracy": 0.6484375,
196
+ "epoch": 0.035,
197
+ "step": 14
198
+ },
199
+ {
200
+ "epoch": 0.0375,
201
+ "grad_norm": 11.913775444030762,
202
+ "learning_rate": 3.7500000000000005e-06,
203
+ "loss": 0.6517,
204
+ "step": 15
205
+ },
206
+ {
207
+ "Batch Mean": -0.8371965289115906,
208
+ "accuracy": 0.65625,
209
+ "epoch": 0.0375,
210
+ "step": 15
211
+ },
212
+ {
213
+ "epoch": 0.04,
214
+ "grad_norm": 9.776491165161133,
215
+ "learning_rate": 4.000000000000001e-06,
216
+ "loss": 0.6435,
217
+ "step": 16
218
+ },
219
+ {
220
+ "Batch Mean": -0.25420451164245605,
221
+ "accuracy": 0.65625,
222
+ "epoch": 0.04,
223
+ "step": 16
224
+ },
225
+ {
226
+ "epoch": 0.0425,
227
+ "grad_norm": 5.094934940338135,
228
+ "learning_rate": 4.25e-06,
229
+ "loss": 0.6352,
230
+ "step": 17
231
+ },
232
+ {
233
+ "Batch Mean": 0.45112472772598267,
234
+ "accuracy": 0.625,
235
+ "epoch": 0.0425,
236
+ "step": 17
237
+ },
238
+ {
239
+ "epoch": 0.045,
240
+ "grad_norm": 6.203393459320068,
241
+ "learning_rate": 4.5e-06,
242
+ "loss": 0.6305,
243
+ "step": 18
244
+ },
245
+ {
246
+ "Batch Mean": 1.0782840251922607,
247
+ "accuracy": 0.640625,
248
+ "epoch": 0.045,
249
+ "step": 18
250
+ },
251
+ {
252
+ "epoch": 0.0475,
253
+ "grad_norm": 11.932191848754883,
254
+ "learning_rate": 4.75e-06,
255
+ "loss": 0.6401,
256
+ "step": 19
257
+ },
258
+ {
259
+ "Batch Mean": 1.6000666618347168,
260
+ "accuracy": 0.65625,
261
+ "epoch": 0.0475,
262
+ "step": 19
263
+ },
264
+ {
265
+ "epoch": 0.05,
266
+ "grad_norm": 18.466459274291992,
267
+ "learning_rate": 5e-06,
268
+ "loss": 0.6928,
269
+ "step": 20
270
+ },
271
+ {
272
+ "Batch Mean": 1.6292922496795654,
273
+ "accuracy": 0.65625,
274
+ "epoch": 0.05,
275
+ "step": 20
276
+ },
277
+ {
278
+ "epoch": 0.0525,
279
+ "grad_norm": 18.958446502685547,
280
+ "learning_rate": 4.986842105263158e-06,
281
+ "loss": 0.6456,
282
+ "step": 21
283
+ },
284
+ {
285
+ "Batch Mean": 1.0992889404296875,
286
+ "accuracy": 0.7109375,
287
+ "epoch": 0.0525,
288
+ "step": 21
289
+ },
290
+ {
291
+ "epoch": 0.055,
292
+ "grad_norm": 12.98255443572998,
293
+ "learning_rate": 4.973684210526316e-06,
294
+ "loss": 0.606,
295
+ "step": 22
296
+ },
297
+ {
298
+ "Batch Mean": 0.33066248893737793,
299
+ "accuracy": 0.703125,
300
+ "epoch": 0.055,
301
+ "step": 22
302
+ },
303
+ {
304
+ "epoch": 0.0575,
305
+ "grad_norm": 6.1022725105285645,
306
+ "learning_rate": 4.960526315789474e-06,
307
+ "loss": 0.5807,
308
+ "step": 23
309
+ },
310
+ {
311
+ "Batch Mean": -0.7870486974716187,
312
+ "accuracy": 0.7109375,
313
+ "epoch": 0.0575,
314
+ "step": 23
315
+ },
316
+ {
317
+ "epoch": 0.06,
318
+ "grad_norm": 9.311738014221191,
319
+ "learning_rate": 4.947368421052632e-06,
320
+ "loss": 0.5331,
321
+ "step": 24
322
+ },
323
+ {
324
+ "Batch Mean": -1.2838190793991089,
325
+ "accuracy": 0.6484375,
326
+ "epoch": 0.06,
327
+ "step": 24
328
+ },
329
+ {
330
+ "epoch": 0.0625,
331
+ "grad_norm": 13.955443382263184,
332
+ "learning_rate": 4.9342105263157895e-06,
333
+ "loss": 0.6186,
334
+ "step": 25
335
+ },
336
+ {
337
+ "Batch Mean": -1.324391484260559,
338
+ "accuracy": 0.6953125,
339
+ "epoch": 0.0625,
340
+ "step": 25
341
+ },
342
+ {
343
+ "epoch": 0.065,
344
+ "grad_norm": 14.612135887145996,
345
+ "learning_rate": 4.921052631578948e-06,
346
+ "loss": 0.5325,
347
+ "step": 26
348
+ },
349
+ {
350
+ "Batch Mean": -0.7885305881500244,
351
+ "accuracy": 0.7109375,
352
+ "epoch": 0.065,
353
+ "step": 26
354
+ },
355
+ {
356
+ "epoch": 0.0675,
357
+ "grad_norm": 9.373554229736328,
358
+ "learning_rate": 4.907894736842106e-06,
359
+ "loss": 0.5549,
360
+ "step": 27
361
+ },
362
+ {
363
+ "Batch Mean": -0.25717926025390625,
364
+ "accuracy": 0.6953125,
365
+ "epoch": 0.0675,
366
+ "step": 27
367
+ },
368
+ {
369
+ "epoch": 0.07,
370
+ "grad_norm": 5.559288501739502,
371
+ "learning_rate": 4.894736842105264e-06,
372
+ "loss": 0.572,
373
+ "step": 28
374
+ },
375
+ {
376
+ "Batch Mean": 0.7993221282958984,
377
+ "accuracy": 0.6171875,
378
+ "epoch": 0.07,
379
+ "step": 28
380
+ },
381
+ {
382
+ "epoch": 0.0725,
383
+ "grad_norm": 10.778632164001465,
384
+ "learning_rate": 4.881578947368422e-06,
385
+ "loss": 0.6806,
386
+ "step": 29
387
+ },
388
+ {
389
+ "Batch Mean": 1.2803305387496948,
390
+ "accuracy": 0.6796875,
391
+ "epoch": 0.0725,
392
+ "step": 29
393
+ },
394
+ {
395
+ "epoch": 0.075,
396
+ "grad_norm": 14.314054489135742,
397
+ "learning_rate": 4.8684210526315795e-06,
398
+ "loss": 0.641,
399
+ "step": 30
400
+ },
401
+ {
402
+ "Batch Mean": 1.1847546100616455,
403
+ "accuracy": 0.7890625,
404
+ "epoch": 0.075,
405
+ "step": 30
406
+ },
407
+ {
408
+ "epoch": 0.0775,
409
+ "grad_norm": 12.86508846282959,
410
+ "learning_rate": 4.855263157894737e-06,
411
+ "loss": 0.5118,
412
+ "step": 31
413
+ },
414
+ {
415
+ "Batch Mean": 0.7971279621124268,
416
+ "accuracy": 0.734375,
417
+ "epoch": 0.0775,
418
+ "step": 31
419
+ },
420
+ {
421
+ "epoch": 0.08,
422
+ "grad_norm": 8.987775802612305,
423
+ "learning_rate": 4.842105263157895e-06,
424
+ "loss": 0.5508,
425
+ "step": 32
426
+ },
427
+ {
428
+ "Batch Mean": -0.12238264083862305,
429
+ "accuracy": 0.671875,
430
+ "epoch": 0.08,
431
+ "step": 32
432
+ },
433
+ {
434
+ "epoch": 0.0825,
435
+ "grad_norm": 4.265674591064453,
436
+ "learning_rate": 4.828947368421053e-06,
437
+ "loss": 0.5533,
438
+ "step": 33
439
+ },
440
+ {
441
+ "Batch Mean": -0.7733749151229858,
442
+ "accuracy": 0.7265625,
443
+ "epoch": 0.0825,
444
+ "step": 33
445
+ },
446
+ {
447
+ "epoch": 0.085,
448
+ "grad_norm": 9.074788093566895,
449
+ "learning_rate": 4.815789473684211e-06,
450
+ "loss": 0.5455,
451
+ "step": 34
452
+ },
453
+ {
454
+ "Batch Mean": -0.9033082723617554,
455
+ "accuracy": 0.7578125,
456
+ "epoch": 0.085,
457
+ "step": 34
458
+ },
459
+ {
460
+ "epoch": 0.0875,
461
+ "grad_norm": 10.331607818603516,
462
+ "learning_rate": 4.802631578947369e-06,
463
+ "loss": 0.5539,
464
+ "step": 35
465
+ },
466
+ {
467
+ "Batch Mean": -0.5780456066131592,
468
+ "accuracy": 0.7265625,
469
+ "epoch": 0.0875,
470
+ "step": 35
471
+ },
472
+ {
473
+ "epoch": 0.09,
474
+ "grad_norm": 7.254377365112305,
475
+ "learning_rate": 4.789473684210527e-06,
476
+ "loss": 0.547,
477
+ "step": 36
478
+ },
479
+ {
480
+ "Batch Mean": 0.09664157032966614,
481
+ "accuracy": 0.6953125,
482
+ "epoch": 0.09,
483
+ "step": 36
484
+ },
485
+ {
486
+ "epoch": 0.0925,
487
+ "grad_norm": 3.9853391647338867,
488
+ "learning_rate": 4.7763157894736844e-06,
489
+ "loss": 0.5451,
490
+ "step": 37
491
+ },
492
+ {
493
+ "Batch Mean": 0.5406360626220703,
494
+ "accuracy": 0.7265625,
495
+ "epoch": 0.0925,
496
+ "step": 37
497
+ },
498
+ {
499
+ "epoch": 0.095,
500
+ "grad_norm": 7.308631896972656,
501
+ "learning_rate": 4.763157894736842e-06,
502
+ "loss": 0.5313,
503
+ "step": 38
504
+ },
505
+ {
506
+ "Batch Mean": 0.6023058891296387,
507
+ "accuracy": 0.7890625,
508
+ "epoch": 0.095,
509
+ "step": 38
510
+ },
511
+ {
512
+ "epoch": 0.0975,
513
+ "grad_norm": 7.4278717041015625,
514
+ "learning_rate": 4.75e-06,
515
+ "loss": 0.5145,
516
+ "step": 39
517
+ },
518
+ {
519
+ "Batch Mean": 0.23680943250656128,
520
+ "accuracy": 0.7890625,
521
+ "epoch": 0.0975,
522
+ "step": 39
523
+ },
524
+ {
525
+ "epoch": 0.1,
526
+ "grad_norm": 5.057112693786621,
527
+ "learning_rate": 4.736842105263158e-06,
528
+ "loss": 0.4793,
529
+ "step": 40
530
+ },
531
+ {
532
+ "Batch Mean": -0.2819175720214844,
533
+ "accuracy": 0.75,
534
+ "epoch": 0.1,
535
+ "step": 40
536
+ },
537
+ {
538
+ "epoch": 0.1025,
539
+ "grad_norm": 5.986076831817627,
540
+ "learning_rate": 4.723684210526316e-06,
541
+ "loss": 0.4989,
542
+ "step": 41
543
+ },
544
+ {
545
+ "Batch Mean": -0.2952081263065338,
546
+ "accuracy": 0.765625,
547
+ "epoch": 0.1025,
548
+ "step": 41
549
+ },
550
+ {
551
+ "epoch": 0.105,
552
+ "grad_norm": 6.123879432678223,
553
+ "learning_rate": 4.710526315789474e-06,
554
+ "loss": 0.4959,
555
+ "step": 42
556
+ },
557
+ {
558
+ "Batch Mean": -0.5327777862548828,
559
+ "accuracy": 0.8359375,
560
+ "epoch": 0.105,
561
+ "step": 42
562
+ },
563
+ {
564
+ "epoch": 0.1075,
565
+ "grad_norm": 7.773658752441406,
566
+ "learning_rate": 4.697368421052632e-06,
567
+ "loss": 0.4501,
568
+ "step": 43
569
+ },
570
+ {
571
+ "Batch Mean": -0.00808095932006836,
572
+ "accuracy": 0.7265625,
573
+ "epoch": 0.1075,
574
+ "step": 43
575
+ },
576
+ {
577
+ "epoch": 0.11,
578
+ "grad_norm": 6.165060520172119,
579
+ "learning_rate": 4.68421052631579e-06,
580
+ "loss": 0.4952,
581
+ "step": 44
582
+ },
583
+ {
584
+ "Batch Mean": 0.23638486862182617,
585
+ "accuracy": 0.7109375,
586
+ "epoch": 0.11,
587
+ "step": 44
588
+ },
589
+ {
590
+ "epoch": 0.1125,
591
+ "grad_norm": 6.963595390319824,
592
+ "learning_rate": 4.671052631578948e-06,
593
+ "loss": 0.5261,
594
+ "step": 45
595
+ },
596
+ {
597
+ "Batch Mean": 0.07831740379333496,
598
+ "accuracy": 0.8125,
599
+ "epoch": 0.1125,
600
+ "step": 45
601
+ },
602
+ {
603
+ "epoch": 0.115,
604
+ "grad_norm": 5.393492221832275,
605
+ "learning_rate": 4.657894736842106e-06,
606
+ "loss": 0.405,
607
+ "step": 46
608
+ },
609
+ {
610
+ "Batch Mean": 0.10195636749267578,
611
+ "accuracy": 0.75,
612
+ "epoch": 0.115,
613
+ "step": 46
614
+ },
615
+ {
616
+ "epoch": 0.1175,
617
+ "grad_norm": 9.352888107299805,
618
+ "learning_rate": 4.6447368421052635e-06,
619
+ "loss": 0.5726,
620
+ "step": 47
621
+ },
622
+ {
623
+ "Batch Mean": 0.4460281729698181,
624
+ "accuracy": 0.7578125,
625
+ "epoch": 0.1175,
626
+ "step": 47
627
+ },
628
+ {
629
+ "epoch": 0.12,
630
+ "grad_norm": 9.130428314208984,
631
+ "learning_rate": 4.631578947368421e-06,
632
+ "loss": 0.5347,
633
+ "step": 48
634
+ },
635
+ {
636
+ "Batch Mean": -0.2610776424407959,
637
+ "accuracy": 0.796875,
638
+ "epoch": 0.12,
639
+ "step": 48
640
+ },
641
+ {
642
+ "epoch": 0.1225,
643
+ "grad_norm": 6.863037586212158,
644
+ "learning_rate": 4.618421052631579e-06,
645
+ "loss": 0.4456,
646
+ "step": 49
647
+ },
648
+ {
649
+ "Batch Mean": -0.19384944438934326,
650
+ "accuracy": 0.6328125,
651
+ "epoch": 0.1225,
652
+ "step": 49
653
+ },
654
+ {
655
+ "epoch": 0.125,
656
+ "grad_norm": 6.617422103881836,
657
+ "learning_rate": 4.605263157894737e-06,
658
+ "loss": 0.5905,
659
+ "step": 50
660
+ },
661
+ {
662
+ "Batch Mean": -0.4514150619506836,
663
+ "accuracy": 0.7890625,
664
+ "epoch": 0.125,
665
+ "step": 50
666
+ },
667
+ {
668
+ "epoch": 0.1275,
669
+ "grad_norm": 7.564980506896973,
670
+ "learning_rate": 4.592105263157895e-06,
671
+ "loss": 0.4885,
672
+ "step": 51
673
+ },
674
+ {
675
+ "Batch Mean": -0.003515481948852539,
676
+ "accuracy": 0.734375,
677
+ "epoch": 0.1275,
678
+ "step": 51
679
+ },
680
+ {
681
+ "epoch": 0.13,
682
+ "grad_norm": 5.258878707885742,
683
+ "learning_rate": 4.578947368421053e-06,
684
+ "loss": 0.5032,
685
+ "step": 52
686
+ },
687
+ {
688
+ "Batch Mean": -0.10907495021820068,
689
+ "accuracy": 0.71875,
690
+ "epoch": 0.13,
691
+ "step": 52
692
+ },
693
+ {
694
+ "epoch": 0.1325,
695
+ "grad_norm": 5.931639194488525,
696
+ "learning_rate": 4.565789473684211e-06,
697
+ "loss": 0.542,
698
+ "step": 53
699
+ },
700
+ {
701
+ "Batch Mean": 0.46248769760131836,
702
+ "accuracy": 0.7890625,
703
+ "epoch": 0.1325,
704
+ "step": 53
705
+ },
706
+ {
707
+ "epoch": 0.135,
708
+ "grad_norm": 7.1796112060546875,
709
+ "learning_rate": 4.552631578947369e-06,
710
+ "loss": 0.4685,
711
+ "step": 54
712
+ },
713
+ {
714
+ "Batch Mean": 0.1234641969203949,
715
+ "accuracy": 0.7265625,
716
+ "epoch": 0.135,
717
+ "step": 54
718
+ },
719
+ {
720
+ "epoch": 0.1375,
721
+ "grad_norm": 6.273733139038086,
722
+ "learning_rate": 4.539473684210527e-06,
723
+ "loss": 0.4989,
724
+ "step": 55
725
+ },
726
+ {
727
+ "Batch Mean": -0.15052831172943115,
728
+ "accuracy": 0.78125,
729
+ "epoch": 0.1375,
730
+ "step": 55
731
+ },
732
+ {
733
+ "epoch": 0.14,
734
+ "grad_norm": 5.630648612976074,
735
+ "learning_rate": 4.526315789473685e-06,
736
+ "loss": 0.4518,
737
+ "step": 56
738
+ },
739
+ {
740
+ "Batch Mean": 0.10203218460083008,
741
+ "accuracy": 0.75,
742
+ "epoch": 0.14,
743
+ "step": 56
744
+ },
745
+ {
746
+ "epoch": 0.1425,
747
+ "grad_norm": 5.465209484100342,
748
+ "learning_rate": 4.513157894736843e-06,
749
+ "loss": 0.4775,
750
+ "step": 57
751
+ },
752
+ {
753
+ "Batch Mean": -0.2146952748298645,
754
+ "accuracy": 0.7578125,
755
+ "epoch": 0.1425,
756
+ "step": 57
757
+ },
758
+ {
759
+ "epoch": 0.145,
760
+ "grad_norm": 5.516883373260498,
761
+ "learning_rate": 4.5e-06,
762
+ "loss": 0.4672,
763
+ "step": 58
764
+ },
765
+ {
766
+ "Batch Mean": 0.39426422119140625,
767
+ "accuracy": 0.7734375,
768
+ "epoch": 0.145,
769
+ "step": 58
770
+ },
771
+ {
772
+ "epoch": 0.1475,
773
+ "grad_norm": 6.986379146575928,
774
+ "learning_rate": 4.4868421052631584e-06,
775
+ "loss": 0.4851,
776
+ "step": 59
777
+ },
778
+ {
779
+ "Batch Mean": 0.1964409053325653,
780
+ "accuracy": 0.75,
781
+ "epoch": 0.1475,
782
+ "step": 59
783
+ },
784
+ {
785
+ "epoch": 0.15,
786
+ "grad_norm": 6.413231372833252,
787
+ "learning_rate": 4.473684210526316e-06,
788
+ "loss": 0.5073,
789
+ "step": 60
790
+ },
791
+ {
792
+ "Batch Mean": -0.21541327238082886,
793
+ "accuracy": 0.7890625,
794
+ "epoch": 0.15,
795
+ "step": 60
796
+ },
797
+ {
798
+ "epoch": 0.1525,
799
+ "grad_norm": 5.495061874389648,
800
+ "learning_rate": 4.460526315789474e-06,
801
+ "loss": 0.4751,
802
+ "step": 61
803
+ },
804
+ {
805
+ "Batch Mean": -0.3059917688369751,
806
+ "accuracy": 0.7890625,
807
+ "epoch": 0.1525,
808
+ "step": 61
809
+ },
810
+ {
811
+ "epoch": 0.155,
812
+ "grad_norm": 6.379850387573242,
813
+ "learning_rate": 4.447368421052632e-06,
814
+ "loss": 0.4679,
815
+ "step": 62
816
+ },
817
+ {
818
+ "Batch Mean": -0.5860270261764526,
819
+ "accuracy": 0.8046875,
820
+ "epoch": 0.155,
821
+ "step": 62
822
+ },
823
+ {
824
+ "epoch": 0.1575,
825
+ "grad_norm": 8.42182731628418,
826
+ "learning_rate": 4.43421052631579e-06,
827
+ "loss": 0.4152,
828
+ "step": 63
829
+ },
830
+ {
831
+ "Batch Mean": 0.14216375350952148,
832
+ "accuracy": 0.7578125,
833
+ "epoch": 0.1575,
834
+ "step": 63
835
+ },
836
+ {
837
+ "epoch": 0.16,
838
+ "grad_norm": 6.759493827819824,
839
+ "learning_rate": 4.4210526315789476e-06,
840
+ "loss": 0.4852,
841
+ "step": 64
842
+ },
843
+ {
844
+ "Batch Mean": 0.3515692353248596,
845
+ "accuracy": 0.796875,
846
+ "epoch": 0.16,
847
+ "step": 64
848
+ },
849
+ {
850
+ "epoch": 0.1625,
851
+ "grad_norm": 7.567401885986328,
852
+ "learning_rate": 4.407894736842105e-06,
853
+ "loss": 0.4449,
854
+ "step": 65
855
+ },
856
+ {
857
+ "Batch Mean": 0.281324565410614,
858
+ "accuracy": 0.765625,
859
+ "epoch": 0.1625,
860
+ "step": 65
861
+ },
862
+ {
863
+ "epoch": 0.165,
864
+ "grad_norm": 7.912868022918701,
865
+ "learning_rate": 4.394736842105263e-06,
866
+ "loss": 0.5717,
867
+ "step": 66
868
+ },
869
+ {
870
+ "Batch Mean": 0.07387387752532959,
871
+ "accuracy": 0.796875,
872
+ "epoch": 0.165,
873
+ "step": 66
874
+ },
875
+ {
876
+ "epoch": 0.1675,
877
+ "grad_norm": 5.737614631652832,
878
+ "learning_rate": 4.381578947368421e-06,
879
+ "loss": 0.4532,
880
+ "step": 67
881
+ },
882
+ {
883
+ "Batch Mean": -0.45137548446655273,
884
+ "accuracy": 0.7734375,
885
+ "epoch": 0.1675,
886
+ "step": 67
887
+ },
888
+ {
889
+ "epoch": 0.17,
890
+ "grad_norm": 9.204909324645996,
891
+ "learning_rate": 4.368421052631579e-06,
892
+ "loss": 0.501,
893
+ "step": 68
894
+ },
895
+ {
896
+ "Batch Mean": -0.12238574028015137,
897
+ "accuracy": 0.828125,
898
+ "epoch": 0.17,
899
+ "step": 68
900
+ },
901
+ {
902
+ "epoch": 0.1725,
903
+ "grad_norm": 6.6219162940979,
904
+ "learning_rate": 4.3552631578947375e-06,
905
+ "loss": 0.416,
906
+ "step": 69
907
+ },
908
+ {
909
+ "Batch Mean": 0.06974506378173828,
910
+ "accuracy": 0.78125,
911
+ "epoch": 0.1725,
912
+ "step": 69
913
+ },
914
+ {
915
+ "epoch": 0.175,
916
+ "grad_norm": 5.526142120361328,
917
+ "learning_rate": 4.342105263157895e-06,
918
+ "loss": 0.4364,
919
+ "step": 70
920
+ },
921
+ {
922
+ "Batch Mean": 0.3401278257369995,
923
+ "accuracy": 0.8359375,
924
+ "epoch": 0.175,
925
+ "step": 70
926
+ },
927
+ {
928
+ "epoch": 0.1775,
929
+ "grad_norm": 6.567529678344727,
930
+ "learning_rate": 4.328947368421053e-06,
931
+ "loss": 0.4396,
932
+ "step": 71
933
+ },
934
+ {
935
+ "Batch Mean": -0.12450069189071655,
936
+ "accuracy": 0.75,
937
+ "epoch": 0.1775,
938
+ "step": 71
939
+ },
940
+ {
941
+ "epoch": 0.18,
942
+ "grad_norm": 6.054138660430908,
943
+ "learning_rate": 4.315789473684211e-06,
944
+ "loss": 0.4604,
945
+ "step": 72
946
+ },
947
+ {
948
+ "Batch Mean": 0.0036773681640625,
949
+ "accuracy": 0.7890625,
950
+ "epoch": 0.18,
951
+ "step": 72
952
+ },
953
+ {
954
+ "epoch": 0.1825,
955
+ "grad_norm": 6.112196445465088,
956
+ "learning_rate": 4.302631578947369e-06,
957
+ "loss": 0.4091,
958
+ "step": 73
959
+ },
960
+ {
961
+ "Batch Mean": -0.3432164192199707,
962
+ "accuracy": 0.7890625,
963
+ "epoch": 0.1825,
964
+ "step": 73
965
+ },
966
+ {
967
+ "epoch": 0.185,
968
+ "grad_norm": 6.806588649749756,
969
+ "learning_rate": 4.289473684210527e-06,
970
+ "loss": 0.4194,
971
+ "step": 74
972
+ },
973
+ {
974
+ "Batch Mean": -0.10890483856201172,
975
+ "accuracy": 0.671875,
976
+ "epoch": 0.185,
977
+ "step": 74
978
+ },
979
+ {
980
+ "epoch": 0.1875,
981
+ "grad_norm": 7.000553131103516,
982
+ "learning_rate": 4.276315789473684e-06,
983
+ "loss": 0.5318,
984
+ "step": 75
985
+ },
986
+ {
987
+ "Batch Mean": 0.6419280171394348,
988
+ "accuracy": 0.7265625,
989
+ "epoch": 0.1875,
990
+ "step": 75
991
+ },
992
+ {
993
+ "epoch": 0.19,
994
+ "grad_norm": 8.422764778137207,
995
+ "learning_rate": 4.2631578947368425e-06,
996
+ "loss": 0.4539,
997
+ "step": 76
998
+ },
999
+ {
1000
+ "Batch Mean": 0.28451067209243774,
1001
+ "accuracy": 0.7734375,
1002
+ "epoch": 0.19,
1003
+ "step": 76
1004
+ },
1005
+ {
1006
+ "epoch": 0.1925,
1007
+ "grad_norm": 6.512566566467285,
1008
+ "learning_rate": 4.25e-06,
1009
+ "loss": 0.4522,
1010
+ "step": 77
1011
+ },
1012
+ {
1013
+ "Batch Mean": -0.07123541831970215,
1014
+ "accuracy": 0.8125,
1015
+ "epoch": 0.1925,
1016
+ "step": 77
1017
+ },
1018
+ {
1019
+ "epoch": 0.195,
1020
+ "grad_norm": 6.979062080383301,
1021
+ "learning_rate": 4.236842105263158e-06,
1022
+ "loss": 0.4827,
1023
+ "step": 78
1024
+ },
1025
+ {
1026
+ "Batch Mean": -0.2889130115509033,
1027
+ "accuracy": 0.71875,
1028
+ "epoch": 0.195,
1029
+ "step": 78
1030
+ },
1031
+ {
1032
+ "epoch": 0.1975,
1033
+ "grad_norm": 7.523491859436035,
1034
+ "learning_rate": 4.223684210526316e-06,
1035
+ "loss": 0.4501,
1036
+ "step": 79
1037
+ },
1038
+ {
1039
+ "Batch Mean": -0.2912619113922119,
1040
+ "accuracy": 0.8046875,
1041
+ "epoch": 0.1975,
1042
+ "step": 79
1043
+ },
1044
+ {
1045
+ "epoch": 0.2,
1046
+ "grad_norm": 6.1573662757873535,
1047
+ "learning_rate": 4.210526315789474e-06,
1048
+ "loss": 0.4537,
1049
+ "step": 80
1050
+ },
1051
+ {
1052
+ "Batch Mean": 0.07626897096633911,
1053
+ "accuracy": 0.84375,
1054
+ "epoch": 0.2,
1055
+ "step": 80
1056
+ },
1057
+ {
1058
+ "epoch": 0.2025,
1059
+ "grad_norm": 5.308783054351807,
1060
+ "learning_rate": 4.197368421052632e-06,
1061
+ "loss": 0.3777,
1062
+ "step": 81
1063
+ },
1064
+ {
1065
+ "Batch Mean": 0.44231414794921875,
1066
+ "accuracy": 0.78125,
1067
+ "epoch": 0.2025,
1068
+ "step": 81
1069
+ },
1070
+ {
1071
+ "epoch": 0.205,
1072
+ "grad_norm": 7.6725969314575195,
1073
+ "learning_rate": 4.18421052631579e-06,
1074
+ "loss": 0.4681,
1075
+ "step": 82
1076
+ },
1077
+ {
1078
+ "Batch Mean": 0.05066095292568207,
1079
+ "accuracy": 0.7734375,
1080
+ "epoch": 0.205,
1081
+ "step": 82
1082
+ },
1083
+ {
1084
+ "epoch": 0.2075,
1085
+ "grad_norm": 6.136054039001465,
1086
+ "learning_rate": 4.171052631578948e-06,
1087
+ "loss": 0.4111,
1088
+ "step": 83
1089
+ },
1090
+ {
1091
+ "Batch Mean": 0.11537289619445801,
1092
+ "accuracy": 0.8515625,
1093
+ "epoch": 0.2075,
1094
+ "step": 83
1095
+ },
1096
+ {
1097
+ "epoch": 0.21,
1098
+ "grad_norm": 5.31056022644043,
1099
+ "learning_rate": 4.157894736842106e-06,
1100
+ "loss": 0.345,
1101
+ "step": 84
1102
+ },
1103
+ {
1104
+ "Batch Mean": 0.05826067924499512,
1105
+ "accuracy": 0.734375,
1106
+ "epoch": 0.21,
1107
+ "step": 84
1108
+ },
1109
+ {
1110
+ "epoch": 0.2125,
1111
+ "grad_norm": 6.368407249450684,
1112
+ "learning_rate": 4.144736842105263e-06,
1113
+ "loss": 0.4834,
1114
+ "step": 85
1115
+ },
1116
+ {
1117
+ "Batch Mean": -0.05756664276123047,
1118
+ "accuracy": 0.75,
1119
+ "epoch": 0.2125,
1120
+ "step": 85
1121
+ },
1122
+ {
1123
+ "epoch": 0.215,
1124
+ "grad_norm": 7.063327312469482,
1125
+ "learning_rate": 4.1315789473684216e-06,
1126
+ "loss": 0.5013,
1127
+ "step": 86
1128
+ },
1129
+ {
1130
+ "Batch Mean": -0.08471214771270752,
1131
+ "accuracy": 0.8046875,
1132
+ "epoch": 0.215,
1133
+ "step": 86
1134
+ },
1135
+ {
1136
+ "epoch": 0.2175,
1137
+ "grad_norm": 6.508166313171387,
1138
+ "learning_rate": 4.118421052631579e-06,
1139
+ "loss": 0.4431,
1140
+ "step": 87
1141
+ },
1142
+ {
1143
+ "Batch Mean": -0.06070905923843384,
1144
+ "accuracy": 0.703125,
1145
+ "epoch": 0.2175,
1146
+ "step": 87
1147
+ },
1148
+ {
1149
+ "epoch": 0.22,
1150
+ "grad_norm": 7.8081583976745605,
1151
+ "learning_rate": 4.105263157894737e-06,
1152
+ "loss": 0.5481,
1153
+ "step": 88
1154
+ },
1155
+ {
1156
+ "Batch Mean": -0.15125751495361328,
1157
+ "accuracy": 0.8046875,
1158
+ "epoch": 0.22,
1159
+ "step": 88
1160
+ },
1161
+ {
1162
+ "epoch": 0.2225,
1163
+ "grad_norm": 5.806808948516846,
1164
+ "learning_rate": 4.092105263157895e-06,
1165
+ "loss": 0.3994,
1166
+ "step": 89
1167
+ },
1168
+ {
1169
+ "Batch Mean": -0.0017851591110229492,
1170
+ "accuracy": 0.828125,
1171
+ "epoch": 0.2225,
1172
+ "step": 89
1173
+ },
1174
+ {
1175
+ "epoch": 0.225,
1176
+ "grad_norm": 5.560466766357422,
1177
+ "learning_rate": 4.078947368421053e-06,
1178
+ "loss": 0.4,
1179
+ "step": 90
1180
+ },
1181
+ {
1182
+ "Batch Mean": 0.07748031616210938,
1183
+ "accuracy": 0.8046875,
1184
+ "epoch": 0.225,
1185
+ "step": 90
1186
+ },
1187
+ {
1188
+ "epoch": 0.2275,
1189
+ "grad_norm": 5.754173278808594,
1190
+ "learning_rate": 4.065789473684211e-06,
1191
+ "loss": 0.4019,
1192
+ "step": 91
1193
+ },
1194
+ {
1195
+ "Batch Mean": -0.24073825776576996,
1196
+ "accuracy": 0.78125,
1197
+ "epoch": 0.2275,
1198
+ "step": 91
1199
+ },
1200
+ {
1201
+ "epoch": 0.23,
1202
+ "grad_norm": 6.231720447540283,
1203
+ "learning_rate": 4.052631578947368e-06,
1204
+ "loss": 0.4585,
1205
+ "step": 92
1206
+ },
1207
+ {
1208
+ "Batch Mean": -0.45170480012893677,
1209
+ "accuracy": 0.75,
1210
+ "epoch": 0.23,
1211
+ "step": 92
1212
+ },
1213
+ {
1214
+ "epoch": 0.2325,
1215
+ "grad_norm": 7.313357353210449,
1216
+ "learning_rate": 4.0394736842105265e-06,
1217
+ "loss": 0.4762,
1218
+ "step": 93
1219
+ },
1220
+ {
1221
+ "Batch Mean": 0.024792194366455078,
1222
+ "accuracy": 0.796875,
1223
+ "epoch": 0.2325,
1224
+ "step": 93
1225
+ },
1226
+ {
1227
+ "epoch": 0.235,
1228
+ "grad_norm": 4.933104515075684,
1229
+ "learning_rate": 4.026315789473684e-06,
1230
+ "loss": 0.4138,
1231
+ "step": 94
1232
+ },
1233
+ {
1234
+ "Batch Mean": -0.02751898765563965,
1235
+ "accuracy": 0.7421875,
1236
+ "epoch": 0.235,
1237
+ "step": 94
1238
+ },
1239
+ {
1240
+ "epoch": 0.2375,
1241
+ "grad_norm": 5.39032506942749,
1242
+ "learning_rate": 4.013157894736842e-06,
1243
+ "loss": 0.4787,
1244
+ "step": 95
1245
+ },
1246
+ {
1247
+ "Batch Mean": 0.06753873825073242,
1248
+ "accuracy": 0.8203125,
1249
+ "epoch": 0.2375,
1250
+ "step": 95
1251
+ },
1252
+ {
1253
+ "epoch": 0.24,
1254
+ "grad_norm": 5.1791462898254395,
1255
+ "learning_rate": 4.000000000000001e-06,
1256
+ "loss": 0.4488,
1257
+ "step": 96
1258
+ },
1259
+ {
1260
+ "Batch Mean": 0.22616100311279297,
1261
+ "accuracy": 0.828125,
1262
+ "epoch": 0.24,
1263
+ "step": 96
1264
+ },
1265
+ {
1266
+ "epoch": 0.2425,
1267
+ "grad_norm": 5.300809383392334,
1268
+ "learning_rate": 3.986842105263158e-06,
1269
+ "loss": 0.4142,
1270
+ "step": 97
1271
+ },
1272
+ {
1273
+ "Batch Mean": -0.15787070989608765,
1274
+ "accuracy": 0.8515625,
1275
+ "epoch": 0.2425,
1276
+ "step": 97
1277
+ },
1278
+ {
1279
+ "epoch": 0.245,
1280
+ "grad_norm": 5.704384803771973,
1281
+ "learning_rate": 3.9736842105263165e-06,
1282
+ "loss": 0.3797,
1283
+ "step": 98
1284
+ },
1285
+ {
1286
+ "Batch Mean": 0.13187718391418457,
1287
+ "accuracy": 0.8046875,
1288
+ "epoch": 0.245,
1289
+ "step": 98
1290
+ },
1291
+ {
1292
+ "epoch": 0.2475,
1293
+ "grad_norm": 6.045483589172363,
1294
+ "learning_rate": 3.960526315789474e-06,
1295
+ "loss": 0.5195,
1296
+ "step": 99
1297
+ },
1298
+ {
1299
+ "Batch Mean": -0.08533608913421631,
1300
+ "accuracy": 0.8203125,
1301
+ "epoch": 0.2475,
1302
+ "step": 99
1303
+ },
1304
+ {
1305
+ "epoch": 0.25,
1306
+ "grad_norm": 4.997817516326904,
1307
+ "learning_rate": 3.947368421052632e-06,
1308
+ "loss": 0.3816,
1309
+ "step": 100
1310
+ },
1311
+ {
1312
+ "Batch Mean": 0.028887659311294556,
1313
+ "accuracy": 0.7421875,
1314
+ "epoch": 0.25,
1315
+ "step": 100
1316
+ },
1317
+ {
1318
+ "epoch": 0.2525,
1319
+ "grad_norm": 5.863315105438232,
1320
+ "learning_rate": 3.93421052631579e-06,
1321
+ "loss": 0.478,
1322
+ "step": 101
1323
+ },
1324
+ {
1325
+ "Batch Mean": 0.17493167519569397,
1326
+ "accuracy": 0.796875,
1327
+ "epoch": 0.2525,
1328
+ "step": 101
1329
+ },
1330
+ {
1331
+ "epoch": 0.255,
1332
+ "grad_norm": 5.986959934234619,
1333
+ "learning_rate": 3.921052631578947e-06,
1334
+ "loss": 0.4283,
1335
+ "step": 102
1336
+ },
1337
+ {
1338
+ "Batch Mean": 0.19265401363372803,
1339
+ "accuracy": 0.8125,
1340
+ "epoch": 0.255,
1341
+ "step": 102
1342
+ },
1343
+ {
1344
+ "epoch": 0.2575,
1345
+ "grad_norm": 5.091299533843994,
1346
+ "learning_rate": 3.907894736842106e-06,
1347
+ "loss": 0.352,
1348
+ "step": 103
1349
+ },
1350
+ {
1351
+ "Batch Mean": -0.2604933977127075,
1352
+ "accuracy": 0.75,
1353
+ "epoch": 0.2575,
1354
+ "step": 103
1355
+ },
1356
+ {
1357
+ "epoch": 0.26,
1358
+ "grad_norm": 6.963299751281738,
1359
+ "learning_rate": 3.894736842105263e-06,
1360
+ "loss": 0.4583,
1361
+ "step": 104
1362
+ },
1363
+ {
1364
+ "Batch Mean": -0.21034908294677734,
1365
+ "accuracy": 0.7734375,
1366
+ "epoch": 0.26,
1367
+ "step": 104
1368
+ },
1369
+ {
1370
+ "epoch": 0.2625,
1371
+ "grad_norm": 7.000269889831543,
1372
+ "learning_rate": 3.8815789473684214e-06,
1373
+ "loss": 0.3837,
1374
+ "step": 105
1375
+ },
1376
+ {
1377
+ "Batch Mean": -0.10478854179382324,
1378
+ "accuracy": 0.8359375,
1379
+ "epoch": 0.2625,
1380
+ "step": 105
1381
+ },
1382
+ {
1383
+ "epoch": 0.265,
1384
+ "grad_norm": 6.25542688369751,
1385
+ "learning_rate": 3.868421052631579e-06,
1386
+ "loss": 0.3928,
1387
+ "step": 106
1388
+ },
1389
+ {
1390
+ "Batch Mean": 0.35255885124206543,
1391
+ "accuracy": 0.7734375,
1392
+ "epoch": 0.265,
1393
+ "step": 106
1394
+ },
1395
+ {
1396
+ "epoch": 0.2675,
1397
+ "grad_norm": 8.28545093536377,
1398
+ "learning_rate": 3.855263157894737e-06,
1399
+ "loss": 0.4785,
1400
+ "step": 107
1401
+ },
1402
+ {
1403
+ "Batch Mean": 0.4886665344238281,
1404
+ "accuracy": 0.7734375,
1405
+ "epoch": 0.2675,
1406
+ "step": 107
1407
+ },
1408
+ {
1409
+ "epoch": 0.27,
1410
+ "grad_norm": 9.611257553100586,
1411
+ "learning_rate": 3.842105263157895e-06,
1412
+ "loss": 0.4635,
1413
+ "step": 108
1414
+ },
1415
+ {
1416
+ "Batch Mean": -0.06474494934082031,
1417
+ "accuracy": 0.8046875,
1418
+ "epoch": 0.27,
1419
+ "step": 108
1420
+ },
1421
+ {
1422
+ "epoch": 0.2725,
1423
+ "grad_norm": 7.419112682342529,
1424
+ "learning_rate": 3.828947368421053e-06,
1425
+ "loss": 0.4225,
1426
+ "step": 109
1427
+ },
1428
+ {
1429
+ "Batch Mean": -0.12506628036499023,
1430
+ "accuracy": 0.8515625,
1431
+ "epoch": 0.2725,
1432
+ "step": 109
1433
+ },
1434
+ {
1435
+ "epoch": 0.275,
1436
+ "grad_norm": 6.5173020362854,
1437
+ "learning_rate": 3.815789473684211e-06,
1438
+ "loss": 0.3518,
1439
+ "step": 110
1440
+ },
1441
+ {
1442
+ "Batch Mean": -0.12815812230110168,
1443
+ "accuracy": 0.921875,
1444
+ "epoch": 0.275,
1445
+ "step": 110
1446
+ },
1447
+ {
1448
+ "epoch": 0.2775,
1449
+ "grad_norm": 5.361306667327881,
1450
+ "learning_rate": 3.802631578947369e-06,
1451
+ "loss": 0.269,
1452
+ "step": 111
1453
+ },
1454
+ {
1455
+ "Batch Mean": -0.20336151123046875,
1456
+ "accuracy": 0.890625,
1457
+ "epoch": 0.2775,
1458
+ "step": 111
1459
+ },
1460
+ {
1461
+ "epoch": 0.28,
1462
+ "grad_norm": 6.405649662017822,
1463
+ "learning_rate": 3.789473684210527e-06,
1464
+ "loss": 0.2563,
1465
+ "step": 112
1466
+ },
1467
+ {
1468
+ "Batch Mean": 0.22764039039611816,
1469
+ "accuracy": 0.8203125,
1470
+ "epoch": 0.28,
1471
+ "step": 112
1472
+ },
1473
+ {
1474
+ "epoch": 0.2825,
1475
+ "grad_norm": 8.156770706176758,
1476
+ "learning_rate": 3.7763157894736847e-06,
1477
+ "loss": 0.4163,
1478
+ "step": 113
1479
+ },
1480
+ {
1481
+ "Batch Mean": 0.27307558059692383,
1482
+ "accuracy": 0.859375,
1483
+ "epoch": 0.2825,
1484
+ "step": 113
1485
+ },
1486
+ {
1487
+ "epoch": 0.285,
1488
+ "grad_norm": 7.346747875213623,
1489
+ "learning_rate": 3.7631578947368426e-06,
1490
+ "loss": 0.3815,
1491
+ "step": 114
1492
+ },
1493
+ {
1494
+ "Batch Mean": 0.6259889602661133,
1495
+ "accuracy": 0.75,
1496
+ "epoch": 0.285,
1497
+ "step": 114
1498
+ },
1499
+ {
1500
+ "epoch": 0.2875,
1501
+ "grad_norm": 12.56270980834961,
1502
+ "learning_rate": 3.7500000000000005e-06,
1503
+ "loss": 0.5411,
1504
+ "step": 115
1505
+ },
1506
+ {
1507
+ "Batch Mean": -0.13174670934677124,
1508
+ "accuracy": 0.8046875,
1509
+ "epoch": 0.2875,
1510
+ "step": 115
1511
+ },
1512
+ {
1513
+ "epoch": 0.29,
1514
+ "grad_norm": 7.563482761383057,
1515
+ "learning_rate": 3.736842105263158e-06,
1516
+ "loss": 0.4455,
1517
+ "step": 116
1518
+ },
1519
+ {
1520
+ "Batch Mean": -0.8023077249526978,
1521
+ "accuracy": 0.8046875,
1522
+ "epoch": 0.29,
1523
+ "step": 116
1524
+ },
1525
+ {
1526
+ "epoch": 0.2925,
1527
+ "grad_norm": 10.422194480895996,
1528
+ "learning_rate": 3.723684210526316e-06,
1529
+ "loss": 0.3826,
1530
+ "step": 117
1531
+ },
1532
+ {
1533
+ "Batch Mean": -0.7135447263717651,
1534
+ "accuracy": 0.796875,
1535
+ "epoch": 0.2925,
1536
+ "step": 117
1537
+ },
1538
+ {
1539
+ "epoch": 0.295,
1540
+ "grad_norm": 9.252284049987793,
1541
+ "learning_rate": 3.710526315789474e-06,
1542
+ "loss": 0.4201,
1543
+ "step": 118
1544
+ },
1545
+ {
1546
+ "Batch Mean": -0.24731099605560303,
1547
+ "accuracy": 0.7578125,
1548
+ "epoch": 0.295,
1549
+ "step": 118
1550
+ },
1551
+ {
1552
+ "epoch": 0.2975,
1553
+ "grad_norm": 6.945714473724365,
1554
+ "learning_rate": 3.6973684210526317e-06,
1555
+ "loss": 0.461,
1556
+ "step": 119
1557
+ },
1558
+ {
1559
+ "Batch Mean": 0.4304164946079254,
1560
+ "accuracy": 0.8359375,
1561
+ "epoch": 0.2975,
1562
+ "step": 119
1563
+ },
1564
+ {
1565
+ "epoch": 0.3,
1566
+ "grad_norm": 7.393038749694824,
1567
+ "learning_rate": 3.6842105263157896e-06,
1568
+ "loss": 0.3897,
1569
+ "step": 120
1570
+ },
1571
+ {
1572
+ "Batch Mean": 0.24881935119628906,
1573
+ "accuracy": 0.7890625,
1574
+ "epoch": 0.3,
1575
+ "step": 120
1576
+ },
1577
+ {
1578
+ "epoch": 0.3025,
1579
+ "grad_norm": 6.129741668701172,
1580
+ "learning_rate": 3.6710526315789476e-06,
1581
+ "loss": 0.3894,
1582
+ "step": 121
1583
+ },
1584
+ {
1585
+ "Batch Mean": 0.09764862060546875,
1586
+ "accuracy": 0.828125,
1587
+ "epoch": 0.3025,
1588
+ "step": 121
1589
+ },
1590
+ {
1591
+ "epoch": 0.305,
1592
+ "grad_norm": 5.265136241912842,
1593
+ "learning_rate": 3.657894736842106e-06,
1594
+ "loss": 0.3733,
1595
+ "step": 122
1596
+ },
1597
+ {
1598
+ "Batch Mean": 0.17956316471099854,
1599
+ "accuracy": 0.8046875,
1600
+ "epoch": 0.305,
1601
+ "step": 122
1602
+ },
1603
+ {
1604
+ "epoch": 0.3075,
1605
+ "grad_norm": 4.876620769500732,
1606
+ "learning_rate": 3.644736842105264e-06,
1607
+ "loss": 0.3689,
1608
+ "step": 123
1609
+ },
1610
+ {
1611
+ "Batch Mean": 0.19482755661010742,
1612
+ "accuracy": 0.8203125,
1613
+ "epoch": 0.3075,
1614
+ "step": 123
1615
+ },
1616
+ {
1617
+ "epoch": 0.31,
1618
+ "grad_norm": 6.0671162605285645,
1619
+ "learning_rate": 3.6315789473684217e-06,
1620
+ "loss": 0.4151,
1621
+ "step": 124
1622
+ },
1623
+ {
1624
+ "Batch Mean": -0.07992386817932129,
1625
+ "accuracy": 0.828125,
1626
+ "epoch": 0.31,
1627
+ "step": 124
1628
+ },
1629
+ {
1630
+ "epoch": 0.3125,
1631
+ "grad_norm": 5.630014419555664,
1632
+ "learning_rate": 3.618421052631579e-06,
1633
+ "loss": 0.406,
1634
+ "step": 125
1635
+ },
1636
+ {
1637
+ "Batch Mean": -0.01944279670715332,
1638
+ "accuracy": 0.8515625,
1639
+ "epoch": 0.3125,
1640
+ "step": 125
1641
+ },
1642
+ {
1643
+ "epoch": 0.315,
1644
+ "grad_norm": 5.250101566314697,
1645
+ "learning_rate": 3.605263157894737e-06,
1646
+ "loss": 0.3816,
1647
+ "step": 126
1648
+ },
1649
+ {
1650
+ "Batch Mean": -0.18266761302947998,
1651
+ "accuracy": 0.8203125,
1652
+ "epoch": 0.315,
1653
+ "step": 126
1654
+ },
1655
+ {
1656
+ "epoch": 0.3175,
1657
+ "grad_norm": 6.644626617431641,
1658
+ "learning_rate": 3.592105263157895e-06,
1659
+ "loss": 0.4098,
1660
+ "step": 127
1661
+ },
1662
+ {
1663
+ "Batch Mean": 0.12618303298950195,
1664
+ "accuracy": 0.8359375,
1665
+ "epoch": 0.3175,
1666
+ "step": 127
1667
+ },
1668
+ {
1669
+ "epoch": 0.32,
1670
+ "grad_norm": 5.627920627593994,
1671
+ "learning_rate": 3.578947368421053e-06,
1672
+ "loss": 0.3854,
1673
+ "step": 128
1674
+ },
1675
+ {
1676
+ "Batch Mean": -0.33390331268310547,
1677
+ "accuracy": 0.8046875,
1678
+ "epoch": 0.32,
1679
+ "step": 128
1680
+ },
1681
+ {
1682
+ "epoch": 0.3225,
1683
+ "grad_norm": 7.37267541885376,
1684
+ "learning_rate": 3.565789473684211e-06,
1685
+ "loss": 0.4615,
1686
+ "step": 129
1687
+ },
1688
+ {
1689
+ "Batch Mean": -0.06647157669067383,
1690
+ "accuracy": 0.8125,
1691
+ "epoch": 0.3225,
1692
+ "step": 129
1693
+ },
1694
+ {
1695
+ "epoch": 0.325,
1696
+ "grad_norm": 6.135495185852051,
1697
+ "learning_rate": 3.5526315789473687e-06,
1698
+ "loss": 0.3621,
1699
+ "step": 130
1700
+ },
1701
+ {
1702
+ "Batch Mean": 0.4405427575111389,
1703
+ "accuracy": 0.75,
1704
+ "epoch": 0.325,
1705
+ "step": 130
1706
+ },
1707
+ {
1708
+ "epoch": 0.3275,
1709
+ "grad_norm": 8.818106651306152,
1710
+ "learning_rate": 3.5394736842105266e-06,
1711
+ "loss": 0.5184,
1712
+ "step": 131
1713
+ },
1714
+ {
1715
+ "Batch Mean": -0.026287078857421875,
1716
+ "accuracy": 0.859375,
1717
+ "epoch": 0.3275,
1718
+ "step": 131
1719
+ },
1720
+ {
1721
+ "epoch": 0.33,
1722
+ "grad_norm": 5.420790195465088,
1723
+ "learning_rate": 3.5263157894736846e-06,
1724
+ "loss": 0.329,
1725
+ "step": 132
1726
+ },
1727
+ {
1728
+ "Batch Mean": 0.05462455749511719,
1729
+ "accuracy": 0.796875,
1730
+ "epoch": 0.33,
1731
+ "step": 132
1732
+ },
1733
+ {
1734
+ "epoch": 0.3325,
1735
+ "grad_norm": 6.507498264312744,
1736
+ "learning_rate": 3.513157894736842e-06,
1737
+ "loss": 0.4115,
1738
+ "step": 133
1739
+ },
1740
+ {
1741
+ "Batch Mean": -0.24898433685302734,
1742
+ "accuracy": 0.765625,
1743
+ "epoch": 0.3325,
1744
+ "step": 133
1745
+ },
1746
+ {
1747
+ "epoch": 0.335,
1748
+ "grad_norm": 7.103653430938721,
1749
+ "learning_rate": 3.5e-06,
1750
+ "loss": 0.47,
1751
+ "step": 134
1752
+ },
1753
+ {
1754
+ "Batch Mean": 0.0019243955612182617,
1755
+ "accuracy": 0.7890625,
1756
+ "epoch": 0.335,
1757
+ "step": 134
1758
+ },
1759
+ {
1760
+ "epoch": 0.3375,
1761
+ "grad_norm": 6.966567039489746,
1762
+ "learning_rate": 3.486842105263158e-06,
1763
+ "loss": 0.4961,
1764
+ "step": 135
1765
+ },
1766
+ {
1767
+ "Batch Mean": -0.3426704406738281,
1768
+ "accuracy": 0.8515625,
1769
+ "epoch": 0.3375,
1770
+ "step": 135
1771
+ },
1772
+ {
1773
+ "epoch": 0.34,
1774
+ "grad_norm": 6.283776760101318,
1775
+ "learning_rate": 3.473684210526316e-06,
1776
+ "loss": 0.3601,
1777
+ "step": 136
1778
+ },
1779
+ {
1780
+ "Batch Mean": -0.20534992218017578,
1781
+ "accuracy": 0.8203125,
1782
+ "epoch": 0.34,
1783
+ "step": 136
1784
+ },
1785
+ {
1786
+ "epoch": 0.3425,
1787
+ "grad_norm": 6.146775245666504,
1788
+ "learning_rate": 3.460526315789474e-06,
1789
+ "loss": 0.3778,
1790
+ "step": 137
1791
+ },
1792
+ {
1793
+ "Batch Mean": 0.08529424667358398,
1794
+ "accuracy": 0.8359375,
1795
+ "epoch": 0.3425,
1796
+ "step": 137
1797
+ },
1798
+ {
1799
+ "epoch": 0.345,
1800
+ "grad_norm": 6.416910171508789,
1801
+ "learning_rate": 3.447368421052632e-06,
1802
+ "loss": 0.4167,
1803
+ "step": 138
1804
+ },
1805
+ {
1806
+ "Batch Mean": -0.047773122787475586,
1807
+ "accuracy": 0.8828125,
1808
+ "epoch": 0.345,
1809
+ "step": 138
1810
+ },
1811
+ {
1812
+ "epoch": 0.3475,
1813
+ "grad_norm": 5.484972953796387,
1814
+ "learning_rate": 3.43421052631579e-06,
1815
+ "loss": 0.3506,
1816
+ "step": 139
1817
+ },
1818
+ {
1819
+ "Batch Mean": 0.5931057929992676,
1820
+ "accuracy": 0.828125,
1821
+ "epoch": 0.3475,
1822
+ "step": 139
1823
+ },
1824
+ {
1825
+ "epoch": 0.35,
1826
+ "grad_norm": 7.790515899658203,
1827
+ "learning_rate": 3.421052631578948e-06,
1828
+ "loss": 0.3479,
1829
+ "step": 140
1830
+ },
1831
+ {
1832
+ "Batch Mean": 0.15590977668762207,
1833
+ "accuracy": 0.84375,
1834
+ "epoch": 0.35,
1835
+ "step": 140
1836
+ },
1837
+ {
1838
+ "epoch": 0.3525,
1839
+ "grad_norm": 6.013650417327881,
1840
+ "learning_rate": 3.4078947368421057e-06,
1841
+ "loss": 0.3612,
1842
+ "step": 141
1843
+ },
1844
+ {
1845
+ "Batch Mean": 0.46294069290161133,
1846
+ "accuracy": 0.78125,
1847
+ "epoch": 0.3525,
1848
+ "step": 141
1849
+ },
1850
+ {
1851
+ "epoch": 0.355,
1852
+ "grad_norm": 8.1344633102417,
1853
+ "learning_rate": 3.3947368421052636e-06,
1854
+ "loss": 0.4946,
1855
+ "step": 142
1856
+ },
1857
+ {
1858
+ "Batch Mean": -0.12668347358703613,
1859
+ "accuracy": 0.796875,
1860
+ "epoch": 0.355,
1861
+ "step": 142
1862
+ },
1863
+ {
1864
+ "epoch": 0.3575,
1865
+ "grad_norm": 5.713737487792969,
1866
+ "learning_rate": 3.381578947368421e-06,
1867
+ "loss": 0.3976,
1868
+ "step": 143
1869
+ },
1870
+ {
1871
+ "Batch Mean": -0.4500846862792969,
1872
+ "accuracy": 0.8203125,
1873
+ "epoch": 0.3575,
1874
+ "step": 143
1875
+ },
1876
+ {
1877
+ "epoch": 0.36,
1878
+ "grad_norm": 7.036086559295654,
1879
+ "learning_rate": 3.368421052631579e-06,
1880
+ "loss": 0.3463,
1881
+ "step": 144
1882
+ },
1883
+ {
1884
+ "Batch Mean": -0.37799644470214844,
1885
+ "accuracy": 0.7890625,
1886
+ "epoch": 0.36,
1887
+ "step": 144
1888
+ },
1889
+ {
1890
+ "epoch": 0.3625,
1891
+ "grad_norm": 6.1970062255859375,
1892
+ "learning_rate": 3.355263157894737e-06,
1893
+ "loss": 0.3877,
1894
+ "step": 145
1895
+ },
1896
+ {
1897
+ "Batch Mean": -0.10559439659118652,
1898
+ "accuracy": 0.7578125,
1899
+ "epoch": 0.3625,
1900
+ "step": 145
1901
+ },
1902
+ {
1903
+ "epoch": 0.365,
1904
+ "grad_norm": 5.835550308227539,
1905
+ "learning_rate": 3.342105263157895e-06,
1906
+ "loss": 0.3851,
1907
+ "step": 146
1908
+ },
1909
+ {
1910
+ "Batch Mean": 0.44306373596191406,
1911
+ "accuracy": 0.75,
1912
+ "epoch": 0.365,
1913
+ "step": 146
1914
+ },
1915
+ {
1916
+ "epoch": 0.3675,
1917
+ "grad_norm": 7.37814474105835,
1918
+ "learning_rate": 3.3289473684210528e-06,
1919
+ "loss": 0.4315,
1920
+ "step": 147
1921
+ },
1922
+ {
1923
+ "Batch Mean": -0.04085433483123779,
1924
+ "accuracy": 0.796875,
1925
+ "epoch": 0.3675,
1926
+ "step": 147
1927
+ },
1928
+ {
1929
+ "epoch": 0.37,
1930
+ "grad_norm": 6.159938812255859,
1931
+ "learning_rate": 3.3157894736842107e-06,
1932
+ "loss": 0.4498,
1933
+ "step": 148
1934
+ },
1935
+ {
1936
+ "Batch Mean": 0.40547609329223633,
1937
+ "accuracy": 0.828125,
1938
+ "epoch": 0.37,
1939
+ "step": 148
1940
+ },
1941
+ {
1942
+ "epoch": 0.3725,
1943
+ "grad_norm": 6.4657301902771,
1944
+ "learning_rate": 3.302631578947369e-06,
1945
+ "loss": 0.4086,
1946
+ "step": 149
1947
+ },
1948
+ {
1949
+ "Batch Mean": 0.18158531188964844,
1950
+ "accuracy": 0.890625,
1951
+ "epoch": 0.3725,
1952
+ "step": 149
1953
+ },
1954
+ {
1955
+ "epoch": 0.375,
1956
+ "grad_norm": 5.317295074462891,
1957
+ "learning_rate": 3.289473684210527e-06,
1958
+ "loss": 0.3154,
1959
+ "step": 150
1960
+ },
1961
+ {
1962
+ "Batch Mean": 0.09602212905883789,
1963
+ "accuracy": 0.8515625,
1964
+ "epoch": 0.375,
1965
+ "step": 150
1966
+ },
1967
+ {
1968
+ "epoch": 0.3775,
1969
+ "grad_norm": 5.428357124328613,
1970
+ "learning_rate": 3.276315789473685e-06,
1971
+ "loss": 0.3893,
1972
+ "step": 151
1973
+ },
1974
+ {
1975
+ "Batch Mean": -0.3176734447479248,
1976
+ "accuracy": 0.765625,
1977
+ "epoch": 0.3775,
1978
+ "step": 151
1979
+ },
1980
+ {
1981
+ "epoch": 0.38,
1982
+ "grad_norm": 6.5872087478637695,
1983
+ "learning_rate": 3.2631578947368423e-06,
1984
+ "loss": 0.4477,
1985
+ "step": 152
1986
+ },
1987
+ {
1988
+ "Batch Mean": -0.34884822368621826,
1989
+ "accuracy": 0.8515625,
1990
+ "epoch": 0.38,
1991
+ "step": 152
1992
+ },
1993
+ {
1994
+ "epoch": 0.3825,
1995
+ "grad_norm": 6.333802223205566,
1996
+ "learning_rate": 3.2500000000000002e-06,
1997
+ "loss": 0.3661,
1998
+ "step": 153
1999
+ },
2000
+ {
2001
+ "Batch Mean": -0.11426492035388947,
2002
+ "accuracy": 0.8203125,
2003
+ "epoch": 0.3825,
2004
+ "step": 153
2005
+ },
2006
+ {
2007
+ "epoch": 0.385,
2008
+ "grad_norm": 6.027217388153076,
2009
+ "learning_rate": 3.236842105263158e-06,
2010
+ "loss": 0.3967,
2011
+ "step": 154
2012
+ },
2013
+ {
2014
+ "Batch Mean": 0.2238612174987793,
2015
+ "accuracy": 0.828125,
2016
+ "epoch": 0.385,
2017
+ "step": 154
2018
+ },
2019
+ {
2020
+ "epoch": 0.3875,
2021
+ "grad_norm": 5.728042125701904,
2022
+ "learning_rate": 3.223684210526316e-06,
2023
+ "loss": 0.3469,
2024
+ "step": 155
2025
+ },
2026
+ {
2027
+ "Batch Mean": 0.2194676399230957,
2028
+ "accuracy": 0.8359375,
2029
+ "epoch": 0.3875,
2030
+ "step": 155
2031
+ },
2032
+ {
2033
+ "epoch": 0.39,
2034
+ "grad_norm": 6.083252906799316,
2035
+ "learning_rate": 3.210526315789474e-06,
2036
+ "loss": 0.3512,
2037
+ "step": 156
2038
+ },
2039
+ {
2040
+ "Batch Mean": 0.4024663269519806,
2041
+ "accuracy": 0.84375,
2042
+ "epoch": 0.39,
2043
+ "step": 156
2044
+ },
2045
+ {
2046
+ "epoch": 0.3925,
2047
+ "grad_norm": 6.562926292419434,
2048
+ "learning_rate": 3.197368421052632e-06,
2049
+ "loss": 0.3141,
2050
+ "step": 157
2051
+ },
2052
+ {
2053
+ "Batch Mean": -0.39385366439819336,
2054
+ "accuracy": 0.859375,
2055
+ "epoch": 0.3925,
2056
+ "step": 157
2057
+ },
2058
+ {
2059
+ "epoch": 0.395,
2060
+ "grad_norm": 7.200568199157715,
2061
+ "learning_rate": 3.1842105263157898e-06,
2062
+ "loss": 0.3309,
2063
+ "step": 158
2064
+ },
2065
+ {
2066
+ "Batch Mean": -0.46120989322662354,
2067
+ "accuracy": 0.796875,
2068
+ "epoch": 0.395,
2069
+ "step": 158
2070
+ },
2071
+ {
2072
+ "epoch": 0.3975,
2073
+ "grad_norm": 8.028575897216797,
2074
+ "learning_rate": 3.1710526315789477e-06,
2075
+ "loss": 0.4198,
2076
+ "step": 159
2077
+ },
2078
+ {
2079
+ "Batch Mean": -0.01939535140991211,
2080
+ "accuracy": 0.828125,
2081
+ "epoch": 0.3975,
2082
+ "step": 159
2083
+ },
2084
+ {
2085
+ "epoch": 0.4,
2086
+ "grad_norm": 6.117007732391357,
2087
+ "learning_rate": 3.157894736842105e-06,
2088
+ "loss": 0.3203,
2089
+ "step": 160
2090
+ },
2091
+ {
2092
+ "Batch Mean": 0.30785632133483887,
2093
+ "accuracy": 0.8046875,
2094
+ "epoch": 0.4,
2095
+ "step": 160
2096
+ },
2097
+ {
2098
+ "epoch": 0.4025,
2099
+ "grad_norm": 6.923008918762207,
2100
+ "learning_rate": 3.144736842105263e-06,
2101
+ "loss": 0.3664,
2102
+ "step": 161
2103
+ },
2104
+ {
2105
+ "Batch Mean": 0.7033977508544922,
2106
+ "accuracy": 0.828125,
2107
+ "epoch": 0.4025,
2108
+ "step": 161
2109
+ },
2110
+ {
2111
+ "epoch": 0.405,
2112
+ "grad_norm": 9.752437591552734,
2113
+ "learning_rate": 3.131578947368421e-06,
2114
+ "loss": 0.3907,
2115
+ "step": 162
2116
+ },
2117
+ {
2118
+ "Batch Mean": -0.347902774810791,
2119
+ "accuracy": 0.828125,
2120
+ "epoch": 0.405,
2121
+ "step": 162
2122
+ },
2123
+ {
2124
+ "epoch": 0.4075,
2125
+ "grad_norm": 7.6583991050720215,
2126
+ "learning_rate": 3.1184210526315793e-06,
2127
+ "loss": 0.374,
2128
+ "step": 163
2129
+ },
2130
+ {
2131
+ "Batch Mean": -0.569427490234375,
2132
+ "accuracy": 0.84375,
2133
+ "epoch": 0.4075,
2134
+ "step": 163
2135
+ },
2136
+ {
2137
+ "epoch": 0.41,
2138
+ "grad_norm": 8.497271537780762,
2139
+ "learning_rate": 3.1052631578947372e-06,
2140
+ "loss": 0.3917,
2141
+ "step": 164
2142
+ },
2143
+ {
2144
+ "Batch Mean": -0.094696044921875,
2145
+ "accuracy": 0.796875,
2146
+ "epoch": 0.41,
2147
+ "step": 164
2148
+ },
2149
+ {
2150
+ "epoch": 0.4125,
2151
+ "grad_norm": 8.36490249633789,
2152
+ "learning_rate": 3.092105263157895e-06,
2153
+ "loss": 0.4532,
2154
+ "step": 165
2155
+ },
2156
+ {
2157
+ "Batch Mean": -0.3759317398071289,
2158
+ "accuracy": 0.859375,
2159
+ "epoch": 0.4125,
2160
+ "step": 165
2161
+ },
2162
+ {
2163
+ "epoch": 0.415,
2164
+ "grad_norm": 7.4028425216674805,
2165
+ "learning_rate": 3.078947368421053e-06,
2166
+ "loss": 0.3049,
2167
+ "step": 166
2168
+ },
2169
+ {
2170
+ "Batch Mean": 0.3960217833518982,
2171
+ "accuracy": 0.828125,
2172
+ "epoch": 0.415,
2173
+ "step": 166
2174
+ },
2175
+ {
2176
+ "epoch": 0.4175,
2177
+ "grad_norm": 7.194099426269531,
2178
+ "learning_rate": 3.065789473684211e-06,
2179
+ "loss": 0.3577,
2180
+ "step": 167
2181
+ },
2182
+ {
2183
+ "Batch Mean": 0.5912597179412842,
2184
+ "accuracy": 0.875,
2185
+ "epoch": 0.4175,
2186
+ "step": 167
2187
+ },
2188
+ {
2189
+ "epoch": 0.42,
2190
+ "grad_norm": 7.954378128051758,
2191
+ "learning_rate": 3.052631578947369e-06,
2192
+ "loss": 0.3329,
2193
+ "step": 168
2194
+ },
2195
+ {
2196
+ "Batch Mean": -0.014994144439697266,
2197
+ "accuracy": 0.796875,
2198
+ "epoch": 0.42,
2199
+ "step": 168
2200
+ },
2201
+ {
2202
+ "epoch": 0.4225,
2203
+ "grad_norm": 7.277341365814209,
2204
+ "learning_rate": 3.0394736842105268e-06,
2205
+ "loss": 0.423,
2206
+ "step": 169
2207
+ },
2208
+ {
2209
+ "Batch Mean": 0.0011951625347137451,
2210
+ "accuracy": 0.8671875,
2211
+ "epoch": 0.4225,
2212
+ "step": 169
2213
+ },
2214
+ {
2215
+ "epoch": 0.425,
2216
+ "grad_norm": 6.068748950958252,
2217
+ "learning_rate": 3.0263157894736843e-06,
2218
+ "loss": 0.3711,
2219
+ "step": 170
2220
+ },
2221
+ {
2222
+ "Batch Mean": -0.23294401168823242,
2223
+ "accuracy": 0.9375,
2224
+ "epoch": 0.425,
2225
+ "step": 170
2226
+ },
2227
+ {
2228
+ "epoch": 0.4275,
2229
+ "grad_norm": 5.278029441833496,
2230
+ "learning_rate": 3.013157894736842e-06,
2231
+ "loss": 0.237,
2232
+ "step": 171
2233
+ },
2234
+ {
2235
+ "Batch Mean": -0.40133750438690186,
2236
+ "accuracy": 0.7890625,
2237
+ "epoch": 0.4275,
2238
+ "step": 171
2239
+ },
2240
+ {
2241
+ "epoch": 0.43,
2242
+ "grad_norm": 7.065173149108887,
2243
+ "learning_rate": 3e-06,
2244
+ "loss": 0.4043,
2245
+ "step": 172
2246
+ },
2247
+ {
2248
+ "Batch Mean": 0.1028299331665039,
2249
+ "accuracy": 0.84375,
2250
+ "epoch": 0.43,
2251
+ "step": 172
2252
+ },
2253
+ {
2254
+ "epoch": 0.4325,
2255
+ "grad_norm": 8.89666748046875,
2256
+ "learning_rate": 2.986842105263158e-06,
2257
+ "loss": 0.3427,
2258
+ "step": 173
2259
+ },
2260
+ {
2261
+ "Batch Mean": 0.08979487419128418,
2262
+ "accuracy": 0.828125,
2263
+ "epoch": 0.4325,
2264
+ "step": 173
2265
+ },
2266
+ {
2267
+ "epoch": 0.435,
2268
+ "grad_norm": 5.712543487548828,
2269
+ "learning_rate": 2.973684210526316e-06,
2270
+ "loss": 0.3642,
2271
+ "step": 174
2272
+ },
2273
+ {
2274
+ "Batch Mean": 0.6362553834915161,
2275
+ "accuracy": 0.84375,
2276
+ "epoch": 0.435,
2277
+ "step": 174
2278
+ },
2279
+ {
2280
+ "epoch": 0.4375,
2281
+ "grad_norm": 8.968149185180664,
2282
+ "learning_rate": 2.960526315789474e-06,
2283
+ "loss": 0.3986,
2284
+ "step": 175
2285
+ },
2286
+ {
2287
+ "Batch Mean": 0.03002166748046875,
2288
+ "accuracy": 0.8125,
2289
+ "epoch": 0.4375,
2290
+ "step": 175
2291
+ },
2292
+ {
2293
+ "epoch": 0.44,
2294
+ "grad_norm": 5.981250286102295,
2295
+ "learning_rate": 2.9473684210526317e-06,
2296
+ "loss": 0.371,
2297
+ "step": 176
2298
+ },
2299
+ {
2300
+ "Batch Mean": 0.15925252437591553,
2301
+ "accuracy": 0.7578125,
2302
+ "epoch": 0.44,
2303
+ "step": 176
2304
+ },
2305
+ {
2306
+ "epoch": 0.4425,
2307
+ "grad_norm": 7.630130290985107,
2308
+ "learning_rate": 2.93421052631579e-06,
2309
+ "loss": 0.4573,
2310
+ "step": 177
2311
+ },
2312
+ {
2313
+ "Batch Mean": -0.5218077898025513,
2314
+ "accuracy": 0.875,
2315
+ "epoch": 0.4425,
2316
+ "step": 177
2317
+ },
2318
+ {
2319
+ "epoch": 0.445,
2320
+ "grad_norm": 8.40796184539795,
2321
+ "learning_rate": 2.921052631578948e-06,
2322
+ "loss": 0.318,
2323
+ "step": 178
2324
+ },
2325
+ {
2326
+ "Batch Mean": -0.21337127685546875,
2327
+ "accuracy": 0.8671875,
2328
+ "epoch": 0.445,
2329
+ "step": 178
2330
+ },
2331
+ {
2332
+ "epoch": 0.4475,
2333
+ "grad_norm": 6.911371231079102,
2334
+ "learning_rate": 2.907894736842106e-06,
2335
+ "loss": 0.3225,
2336
+ "step": 179
2337
+ },
2338
+ {
2339
+ "Batch Mean": -0.4858684539794922,
2340
+ "accuracy": 0.796875,
2341
+ "epoch": 0.4475,
2342
+ "step": 179
2343
+ },
2344
+ {
2345
+ "epoch": 0.45,
2346
+ "grad_norm": 7.585726737976074,
2347
+ "learning_rate": 2.8947368421052634e-06,
2348
+ "loss": 0.4169,
2349
+ "step": 180
2350
+ },
2351
+ {
2352
+ "Batch Mean": 0.6967126131057739,
2353
+ "accuracy": 0.8359375,
2354
+ "epoch": 0.45,
2355
+ "step": 180
2356
+ },
2357
+ {
2358
+ "epoch": 0.4525,
2359
+ "grad_norm": 9.311128616333008,
2360
+ "learning_rate": 2.8815789473684213e-06,
2361
+ "loss": 0.3541,
2362
+ "step": 181
2363
+ },
2364
+ {
2365
+ "Batch Mean": 0.40191876888275146,
2366
+ "accuracy": 0.875,
2367
+ "epoch": 0.4525,
2368
+ "step": 181
2369
+ },
2370
+ {
2371
+ "epoch": 0.455,
2372
+ "grad_norm": 6.452785015106201,
2373
+ "learning_rate": 2.868421052631579e-06,
2374
+ "loss": 0.2999,
2375
+ "step": 182
2376
+ },
2377
+ {
2378
+ "Batch Mean": 0.35803985595703125,
2379
+ "accuracy": 0.765625,
2380
+ "epoch": 0.455,
2381
+ "step": 182
2382
+ },
2383
+ {
2384
+ "epoch": 0.4575,
2385
+ "grad_norm": 7.8335418701171875,
2386
+ "learning_rate": 2.855263157894737e-06,
2387
+ "loss": 0.4661,
2388
+ "step": 183
2389
+ },
2390
+ {
2391
+ "Batch Mean": -0.17188113927841187,
2392
+ "accuracy": 0.8203125,
2393
+ "epoch": 0.4575,
2394
+ "step": 183
2395
+ },
2396
+ {
2397
+ "epoch": 0.46,
2398
+ "grad_norm": 6.696692943572998,
2399
+ "learning_rate": 2.842105263157895e-06,
2400
+ "loss": 0.4276,
2401
+ "step": 184
2402
+ },
2403
+ {
2404
+ "Batch Mean": -0.7287430763244629,
2405
+ "accuracy": 0.8125,
2406
+ "epoch": 0.46,
2407
+ "step": 184
2408
+ },
2409
+ {
2410
+ "epoch": 0.4625,
2411
+ "grad_norm": 9.841276168823242,
2412
+ "learning_rate": 2.828947368421053e-06,
2413
+ "loss": 0.4608,
2414
+ "step": 185
2415
+ },
2416
+ {
2417
+ "Batch Mean": -0.4493199586868286,
2418
+ "accuracy": 0.765625,
2419
+ "epoch": 0.4625,
2420
+ "step": 185
2421
+ },
2422
+ {
2423
+ "epoch": 0.465,
2424
+ "grad_norm": 6.939754486083984,
2425
+ "learning_rate": 2.815789473684211e-06,
2426
+ "loss": 0.385,
2427
+ "step": 186
2428
+ },
2429
+ {
2430
+ "Batch Mean": -0.001141861081123352,
2431
+ "accuracy": 0.796875,
2432
+ "epoch": 0.465,
2433
+ "step": 186
2434
+ },
2435
+ {
2436
+ "epoch": 0.4675,
2437
+ "grad_norm": 5.819330215454102,
2438
+ "learning_rate": 2.8026315789473683e-06,
2439
+ "loss": 0.3872,
2440
+ "step": 187
2441
+ },
2442
+ {
2443
+ "Batch Mean": 0.11795490980148315,
2444
+ "accuracy": 0.8984375,
2445
+ "epoch": 0.4675,
2446
+ "step": 187
2447
+ },
2448
+ {
2449
+ "epoch": 0.47,
2450
+ "grad_norm": 5.095602512359619,
2451
+ "learning_rate": 2.789473684210526e-06,
2452
+ "loss": 0.2691,
2453
+ "step": 188
2454
+ },
2455
+ {
2456
+ "Batch Mean": 0.0792817771434784,
2457
+ "accuracy": 0.7734375,
2458
+ "epoch": 0.47,
2459
+ "step": 188
2460
+ },
2461
+ {
2462
+ "epoch": 0.4725,
2463
+ "grad_norm": 6.671010971069336,
2464
+ "learning_rate": 2.776315789473684e-06,
2465
+ "loss": 0.4304,
2466
+ "step": 189
2467
+ },
2468
+ {
2469
+ "Batch Mean": 0.11675047874450684,
2470
+ "accuracy": 0.8828125,
2471
+ "epoch": 0.4725,
2472
+ "step": 189
2473
+ },
2474
+ {
2475
+ "epoch": 0.475,
2476
+ "grad_norm": 5.194698810577393,
2477
+ "learning_rate": 2.7631578947368424e-06,
2478
+ "loss": 0.3043,
2479
+ "step": 190
2480
+ },
2481
+ {
2482
+ "Batch Mean": 0.507703423500061,
2483
+ "accuracy": 0.8359375,
2484
+ "epoch": 0.475,
2485
+ "step": 190
2486
+ },
2487
+ {
2488
+ "epoch": 0.4775,
2489
+ "grad_norm": 8.995157241821289,
2490
+ "learning_rate": 2.7500000000000004e-06,
2491
+ "loss": 0.4023,
2492
+ "step": 191
2493
+ },
2494
+ {
2495
+ "Batch Mean": 0.007342934608459473,
2496
+ "accuracy": 0.8828125,
2497
+ "epoch": 0.4775,
2498
+ "step": 191
2499
+ },
2500
+ {
2501
+ "epoch": 0.48,
2502
+ "grad_norm": 4.653019428253174,
2503
+ "learning_rate": 2.7368421052631583e-06,
2504
+ "loss": 0.2997,
2505
+ "step": 192
2506
+ },
2507
+ {
2508
+ "Batch Mean": -0.11206340789794922,
2509
+ "accuracy": 0.84375,
2510
+ "epoch": 0.48,
2511
+ "step": 192
2512
+ },
2513
+ {
2514
+ "epoch": 0.4825,
2515
+ "grad_norm": 5.593299388885498,
2516
+ "learning_rate": 2.723684210526316e-06,
2517
+ "loss": 0.3592,
2518
+ "step": 193
2519
+ },
2520
+ {
2521
+ "Batch Mean": 0.34449005126953125,
2522
+ "accuracy": 0.8203125,
2523
+ "epoch": 0.4825,
2524
+ "step": 193
2525
+ },
2526
+ {
2527
+ "epoch": 0.485,
2528
+ "grad_norm": 7.729828834533691,
2529
+ "learning_rate": 2.710526315789474e-06,
2530
+ "loss": 0.4174,
2531
+ "step": 194
2532
+ },
2533
+ {
2534
+ "Batch Mean": 0.3511536121368408,
2535
+ "accuracy": 0.796875,
2536
+ "epoch": 0.485,
2537
+ "step": 194
2538
+ },
2539
+ {
2540
+ "epoch": 0.4875,
2541
+ "grad_norm": 6.8778791427612305,
2542
+ "learning_rate": 2.697368421052632e-06,
2543
+ "loss": 0.3958,
2544
+ "step": 195
2545
+ },
2546
+ {
2547
+ "Batch Mean": -0.4304494857788086,
2548
+ "accuracy": 0.828125,
2549
+ "epoch": 0.4875,
2550
+ "step": 195
2551
+ },
2552
+ {
2553
+ "epoch": 0.49,
2554
+ "grad_norm": 7.1837897300720215,
2555
+ "learning_rate": 2.68421052631579e-06,
2556
+ "loss": 0.3644,
2557
+ "step": 196
2558
+ },
2559
+ {
2560
+ "Batch Mean": -0.5402705669403076,
2561
+ "accuracy": 0.8828125,
2562
+ "epoch": 0.49,
2563
+ "step": 196
2564
+ },
2565
+ {
2566
+ "epoch": 0.4925,
2567
+ "grad_norm": 7.711959362030029,
2568
+ "learning_rate": 2.6710526315789474e-06,
2569
+ "loss": 0.3134,
2570
+ "step": 197
2571
+ },
2572
+ {
2573
+ "Batch Mean": -0.4601917266845703,
2574
+ "accuracy": 0.8203125,
2575
+ "epoch": 0.4925,
2576
+ "step": 197
2577
+ },
2578
+ {
2579
+ "epoch": 0.495,
2580
+ "grad_norm": 7.087433815002441,
2581
+ "learning_rate": 2.6578947368421053e-06,
2582
+ "loss": 0.3694,
2583
+ "step": 198
2584
+ },
2585
+ {
2586
+ "Batch Mean": 0.003908276557922363,
2587
+ "accuracy": 0.859375,
2588
+ "epoch": 0.495,
2589
+ "step": 198
2590
+ },
2591
+ {
2592
+ "epoch": 0.4975,
2593
+ "grad_norm": 5.323395252227783,
2594
+ "learning_rate": 2.644736842105263e-06,
2595
+ "loss": 0.3269,
2596
+ "step": 199
2597
+ },
2598
+ {
2599
+ "Batch Mean": 0.3632014989852905,
2600
+ "accuracy": 0.8828125,
2601
+ "epoch": 0.4975,
2602
+ "step": 199
2603
+ },
2604
+ {
2605
+ "epoch": 0.5,
2606
+ "grad_norm": 6.865387439727783,
2607
+ "learning_rate": 2.631578947368421e-06,
2608
+ "loss": 0.3261,
2609
+ "step": 200
2610
+ }
2611
+ ],
2612
+ "logging_steps": 1,
2613
+ "max_steps": 400,
2614
+ "num_input_tokens_seen": 0,
2615
+ "num_train_epochs": 1,
2616
+ "save_steps": 100,
2617
+ "stateful_callbacks": {
2618
+ "TrainerControl": {
2619
+ "args": {
2620
+ "should_epoch_stop": false,
2621
+ "should_evaluate": false,
2622
+ "should_log": false,
2623
+ "should_save": true,
2624
+ "should_training_stop": false
2625
+ },
2626
+ "attributes": {}
2627
+ }
2628
+ },
2629
+ "total_flos": 0.0,
2630
+ "train_batch_size": 16,
2631
+ "trial_name": null,
2632
+ "trial_params": null
2633
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108253c2924ab960b742973fd9045c7f43b2d39e8229930aed15fd573ed1620a
3
+ size 5752
checkpoint-200/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-300/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-300/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tlrm/Q25-1.5B-UC",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 8960,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 28,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 28,
24
+ "num_key_value_heads": 2,
25
+ "pad_token_id": 151643,
26
+ "rms_norm_eps": 1e-06,
27
+ "rope_scaling": null,
28
+ "rope_theta": 1000000.0,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.48.0",
33
+ "use_cache": false,
34
+ "use_mrope": false,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ }
checkpoint-300/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-300/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd05c65fca1ea27d966424df6c0fefb6afeb176f93719f71afba510c8205258d
3
+ size 4996670464
checkpoint-300/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edb550bbaa8fdd5f9d9f4ef784c0f8a67a479bbeecc1c1febb52f4bd12a0814c
3
+ size 1178231192
checkpoint-300/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6174863360
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.norm.weight": "model-00002-of-00002.safetensors",
344
+ "score.weight": "model-00002-of-00002.safetensors"
345
+ }
346
+ }
checkpoint-300/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-300/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-300/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,3933 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.75,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "Batch Mean": 0.8096684217453003,
13
+ "accuracy": 0.625,
14
+ "epoch": 0,
15
+ "step": 0
16
+ },
17
+ {
18
+ "epoch": 0.0025,
19
+ "grad_norm": 9.15977954864502,
20
+ "learning_rate": 2.5000000000000004e-07,
21
+ "loss": 0.6694,
22
+ "step": 1
23
+ },
24
+ {
25
+ "Batch Mean": 0.8517913818359375,
26
+ "accuracy": 0.5234375,
27
+ "epoch": 0.0025,
28
+ "step": 1
29
+ },
30
+ {
31
+ "epoch": 0.005,
32
+ "grad_norm": 9.550761222839355,
33
+ "learning_rate": 5.000000000000001e-07,
34
+ "loss": 0.7001,
35
+ "step": 2
36
+ },
37
+ {
38
+ "Batch Mean": 0.8251190185546875,
39
+ "accuracy": 0.4921875,
40
+ "epoch": 0.005,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.0075,
45
+ "grad_norm": 10.096807479858398,
46
+ "learning_rate": 7.5e-07,
47
+ "loss": 0.7277,
48
+ "step": 3
49
+ },
50
+ {
51
+ "Batch Mean": 0.8156070709228516,
52
+ "accuracy": 0.515625,
53
+ "epoch": 0.0075,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.01,
58
+ "grad_norm": 10.845061302185059,
59
+ "learning_rate": 1.0000000000000002e-06,
60
+ "loss": 0.7116,
61
+ "step": 4
62
+ },
63
+ {
64
+ "Batch Mean": 0.772618293762207,
65
+ "accuracy": 0.53125,
66
+ "epoch": 0.01,
67
+ "step": 4
68
+ },
69
+ {
70
+ "epoch": 0.0125,
71
+ "grad_norm": 10.683115005493164,
72
+ "learning_rate": 1.25e-06,
73
+ "loss": 0.7074,
74
+ "step": 5
75
+ },
76
+ {
77
+ "Batch Mean": 0.7320594787597656,
78
+ "accuracy": 0.5390625,
79
+ "epoch": 0.0125,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.015,
84
+ "grad_norm": 9.102219581604004,
85
+ "learning_rate": 1.5e-06,
86
+ "loss": 0.6964,
87
+ "step": 6
88
+ },
89
+ {
90
+ "Batch Mean": 0.639228105545044,
91
+ "accuracy": 0.5703125,
92
+ "epoch": 0.015,
93
+ "step": 6
94
+ },
95
+ {
96
+ "epoch": 0.0175,
97
+ "grad_norm": 10.126181602478027,
98
+ "learning_rate": 1.75e-06,
99
+ "loss": 0.6981,
100
+ "step": 7
101
+ },
102
+ {
103
+ "Batch Mean": 0.28215163946151733,
104
+ "accuracy": 0.6015625,
105
+ "epoch": 0.0175,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.02,
110
+ "grad_norm": 6.3671040534973145,
111
+ "learning_rate": 2.0000000000000003e-06,
112
+ "loss": 0.6668,
113
+ "step": 8
114
+ },
115
+ {
116
+ "Batch Mean": 0.10402120649814606,
117
+ "accuracy": 0.5234375,
118
+ "epoch": 0.02,
119
+ "step": 8
120
+ },
121
+ {
122
+ "epoch": 0.0225,
123
+ "grad_norm": 6.053694248199463,
124
+ "learning_rate": 2.25e-06,
125
+ "loss": 0.6907,
126
+ "step": 9
127
+ },
128
+ {
129
+ "Batch Mean": -0.794627845287323,
130
+ "accuracy": 0.5234375,
131
+ "epoch": 0.0225,
132
+ "step": 9
133
+ },
134
+ {
135
+ "epoch": 0.025,
136
+ "grad_norm": 9.284210205078125,
137
+ "learning_rate": 2.5e-06,
138
+ "loss": 0.6879,
139
+ "step": 10
140
+ },
141
+ {
142
+ "Batch Mean": -1.1373445987701416,
143
+ "accuracy": 0.59375,
144
+ "epoch": 0.025,
145
+ "step": 10
146
+ },
147
+ {
148
+ "epoch": 0.0275,
149
+ "grad_norm": 13.110421180725098,
150
+ "learning_rate": 2.7500000000000004e-06,
151
+ "loss": 0.6954,
152
+ "step": 11
153
+ },
154
+ {
155
+ "Batch Mean": -1.2041501998901367,
156
+ "accuracy": 0.59375,
157
+ "epoch": 0.0275,
158
+ "step": 11
159
+ },
160
+ {
161
+ "epoch": 0.03,
162
+ "grad_norm": 13.619694709777832,
163
+ "learning_rate": 3e-06,
164
+ "loss": 0.7004,
165
+ "step": 12
166
+ },
167
+ {
168
+ "Batch Mean": -1.1390533447265625,
169
+ "accuracy": 0.65625,
170
+ "epoch": 0.03,
171
+ "step": 12
172
+ },
173
+ {
174
+ "epoch": 0.0325,
175
+ "grad_norm": 16.698774337768555,
176
+ "learning_rate": 3.2500000000000002e-06,
177
+ "loss": 0.6691,
178
+ "step": 13
179
+ },
180
+ {
181
+ "Batch Mean": -1.2006721496582031,
182
+ "accuracy": 0.6953125,
183
+ "epoch": 0.0325,
184
+ "step": 13
185
+ },
186
+ {
187
+ "epoch": 0.035,
188
+ "grad_norm": 13.031152725219727,
189
+ "learning_rate": 3.5e-06,
190
+ "loss": 0.6749,
191
+ "step": 14
192
+ },
193
+ {
194
+ "Batch Mean": -1.1018962860107422,
195
+ "accuracy": 0.6484375,
196
+ "epoch": 0.035,
197
+ "step": 14
198
+ },
199
+ {
200
+ "epoch": 0.0375,
201
+ "grad_norm": 11.913775444030762,
202
+ "learning_rate": 3.7500000000000005e-06,
203
+ "loss": 0.6517,
204
+ "step": 15
205
+ },
206
+ {
207
+ "Batch Mean": -0.8371965289115906,
208
+ "accuracy": 0.65625,
209
+ "epoch": 0.0375,
210
+ "step": 15
211
+ },
212
+ {
213
+ "epoch": 0.04,
214
+ "grad_norm": 9.776491165161133,
215
+ "learning_rate": 4.000000000000001e-06,
216
+ "loss": 0.6435,
217
+ "step": 16
218
+ },
219
+ {
220
+ "Batch Mean": -0.25420451164245605,
221
+ "accuracy": 0.65625,
222
+ "epoch": 0.04,
223
+ "step": 16
224
+ },
225
+ {
226
+ "epoch": 0.0425,
227
+ "grad_norm": 5.094934940338135,
228
+ "learning_rate": 4.25e-06,
229
+ "loss": 0.6352,
230
+ "step": 17
231
+ },
232
+ {
233
+ "Batch Mean": 0.45112472772598267,
234
+ "accuracy": 0.625,
235
+ "epoch": 0.0425,
236
+ "step": 17
237
+ },
238
+ {
239
+ "epoch": 0.045,
240
+ "grad_norm": 6.203393459320068,
241
+ "learning_rate": 4.5e-06,
242
+ "loss": 0.6305,
243
+ "step": 18
244
+ },
245
+ {
246
+ "Batch Mean": 1.0782840251922607,
247
+ "accuracy": 0.640625,
248
+ "epoch": 0.045,
249
+ "step": 18
250
+ },
251
+ {
252
+ "epoch": 0.0475,
253
+ "grad_norm": 11.932191848754883,
254
+ "learning_rate": 4.75e-06,
255
+ "loss": 0.6401,
256
+ "step": 19
257
+ },
258
+ {
259
+ "Batch Mean": 1.6000666618347168,
260
+ "accuracy": 0.65625,
261
+ "epoch": 0.0475,
262
+ "step": 19
263
+ },
264
+ {
265
+ "epoch": 0.05,
266
+ "grad_norm": 18.466459274291992,
267
+ "learning_rate": 5e-06,
268
+ "loss": 0.6928,
269
+ "step": 20
270
+ },
271
+ {
272
+ "Batch Mean": 1.6292922496795654,
273
+ "accuracy": 0.65625,
274
+ "epoch": 0.05,
275
+ "step": 20
276
+ },
277
+ {
278
+ "epoch": 0.0525,
279
+ "grad_norm": 18.958446502685547,
280
+ "learning_rate": 4.986842105263158e-06,
281
+ "loss": 0.6456,
282
+ "step": 21
283
+ },
284
+ {
285
+ "Batch Mean": 1.0992889404296875,
286
+ "accuracy": 0.7109375,
287
+ "epoch": 0.0525,
288
+ "step": 21
289
+ },
290
+ {
291
+ "epoch": 0.055,
292
+ "grad_norm": 12.98255443572998,
293
+ "learning_rate": 4.973684210526316e-06,
294
+ "loss": 0.606,
295
+ "step": 22
296
+ },
297
+ {
298
+ "Batch Mean": 0.33066248893737793,
299
+ "accuracy": 0.703125,
300
+ "epoch": 0.055,
301
+ "step": 22
302
+ },
303
+ {
304
+ "epoch": 0.0575,
305
+ "grad_norm": 6.1022725105285645,
306
+ "learning_rate": 4.960526315789474e-06,
307
+ "loss": 0.5807,
308
+ "step": 23
309
+ },
310
+ {
311
+ "Batch Mean": -0.7870486974716187,
312
+ "accuracy": 0.7109375,
313
+ "epoch": 0.0575,
314
+ "step": 23
315
+ },
316
+ {
317
+ "epoch": 0.06,
318
+ "grad_norm": 9.311738014221191,
319
+ "learning_rate": 4.947368421052632e-06,
320
+ "loss": 0.5331,
321
+ "step": 24
322
+ },
323
+ {
324
+ "Batch Mean": -1.2838190793991089,
325
+ "accuracy": 0.6484375,
326
+ "epoch": 0.06,
327
+ "step": 24
328
+ },
329
+ {
330
+ "epoch": 0.0625,
331
+ "grad_norm": 13.955443382263184,
332
+ "learning_rate": 4.9342105263157895e-06,
333
+ "loss": 0.6186,
334
+ "step": 25
335
+ },
336
+ {
337
+ "Batch Mean": -1.324391484260559,
338
+ "accuracy": 0.6953125,
339
+ "epoch": 0.0625,
340
+ "step": 25
341
+ },
342
+ {
343
+ "epoch": 0.065,
344
+ "grad_norm": 14.612135887145996,
345
+ "learning_rate": 4.921052631578948e-06,
346
+ "loss": 0.5325,
347
+ "step": 26
348
+ },
349
+ {
350
+ "Batch Mean": -0.7885305881500244,
351
+ "accuracy": 0.7109375,
352
+ "epoch": 0.065,
353
+ "step": 26
354
+ },
355
+ {
356
+ "epoch": 0.0675,
357
+ "grad_norm": 9.373554229736328,
358
+ "learning_rate": 4.907894736842106e-06,
359
+ "loss": 0.5549,
360
+ "step": 27
361
+ },
362
+ {
363
+ "Batch Mean": -0.25717926025390625,
364
+ "accuracy": 0.6953125,
365
+ "epoch": 0.0675,
366
+ "step": 27
367
+ },
368
+ {
369
+ "epoch": 0.07,
370
+ "grad_norm": 5.559288501739502,
371
+ "learning_rate": 4.894736842105264e-06,
372
+ "loss": 0.572,
373
+ "step": 28
374
+ },
375
+ {
376
+ "Batch Mean": 0.7993221282958984,
377
+ "accuracy": 0.6171875,
378
+ "epoch": 0.07,
379
+ "step": 28
380
+ },
381
+ {
382
+ "epoch": 0.0725,
383
+ "grad_norm": 10.778632164001465,
384
+ "learning_rate": 4.881578947368422e-06,
385
+ "loss": 0.6806,
386
+ "step": 29
387
+ },
388
+ {
389
+ "Batch Mean": 1.2803305387496948,
390
+ "accuracy": 0.6796875,
391
+ "epoch": 0.0725,
392
+ "step": 29
393
+ },
394
+ {
395
+ "epoch": 0.075,
396
+ "grad_norm": 14.314054489135742,
397
+ "learning_rate": 4.8684210526315795e-06,
398
+ "loss": 0.641,
399
+ "step": 30
400
+ },
401
+ {
402
+ "Batch Mean": 1.1847546100616455,
403
+ "accuracy": 0.7890625,
404
+ "epoch": 0.075,
405
+ "step": 30
406
+ },
407
+ {
408
+ "epoch": 0.0775,
409
+ "grad_norm": 12.86508846282959,
410
+ "learning_rate": 4.855263157894737e-06,
411
+ "loss": 0.5118,
412
+ "step": 31
413
+ },
414
+ {
415
+ "Batch Mean": 0.7971279621124268,
416
+ "accuracy": 0.734375,
417
+ "epoch": 0.0775,
418
+ "step": 31
419
+ },
420
+ {
421
+ "epoch": 0.08,
422
+ "grad_norm": 8.987775802612305,
423
+ "learning_rate": 4.842105263157895e-06,
424
+ "loss": 0.5508,
425
+ "step": 32
426
+ },
427
+ {
428
+ "Batch Mean": -0.12238264083862305,
429
+ "accuracy": 0.671875,
430
+ "epoch": 0.08,
431
+ "step": 32
432
+ },
433
+ {
434
+ "epoch": 0.0825,
435
+ "grad_norm": 4.265674591064453,
436
+ "learning_rate": 4.828947368421053e-06,
437
+ "loss": 0.5533,
438
+ "step": 33
439
+ },
440
+ {
441
+ "Batch Mean": -0.7733749151229858,
442
+ "accuracy": 0.7265625,
443
+ "epoch": 0.0825,
444
+ "step": 33
445
+ },
446
+ {
447
+ "epoch": 0.085,
448
+ "grad_norm": 9.074788093566895,
449
+ "learning_rate": 4.815789473684211e-06,
450
+ "loss": 0.5455,
451
+ "step": 34
452
+ },
453
+ {
454
+ "Batch Mean": -0.9033082723617554,
455
+ "accuracy": 0.7578125,
456
+ "epoch": 0.085,
457
+ "step": 34
458
+ },
459
+ {
460
+ "epoch": 0.0875,
461
+ "grad_norm": 10.331607818603516,
462
+ "learning_rate": 4.802631578947369e-06,
463
+ "loss": 0.5539,
464
+ "step": 35
465
+ },
466
+ {
467
+ "Batch Mean": -0.5780456066131592,
468
+ "accuracy": 0.7265625,
469
+ "epoch": 0.0875,
470
+ "step": 35
471
+ },
472
+ {
473
+ "epoch": 0.09,
474
+ "grad_norm": 7.254377365112305,
475
+ "learning_rate": 4.789473684210527e-06,
476
+ "loss": 0.547,
477
+ "step": 36
478
+ },
479
+ {
480
+ "Batch Mean": 0.09664157032966614,
481
+ "accuracy": 0.6953125,
482
+ "epoch": 0.09,
483
+ "step": 36
484
+ },
485
+ {
486
+ "epoch": 0.0925,
487
+ "grad_norm": 3.9853391647338867,
488
+ "learning_rate": 4.7763157894736844e-06,
489
+ "loss": 0.5451,
490
+ "step": 37
491
+ },
492
+ {
493
+ "Batch Mean": 0.5406360626220703,
494
+ "accuracy": 0.7265625,
495
+ "epoch": 0.0925,
496
+ "step": 37
497
+ },
498
+ {
499
+ "epoch": 0.095,
500
+ "grad_norm": 7.308631896972656,
501
+ "learning_rate": 4.763157894736842e-06,
502
+ "loss": 0.5313,
503
+ "step": 38
504
+ },
505
+ {
506
+ "Batch Mean": 0.6023058891296387,
507
+ "accuracy": 0.7890625,
508
+ "epoch": 0.095,
509
+ "step": 38
510
+ },
511
+ {
512
+ "epoch": 0.0975,
513
+ "grad_norm": 7.4278717041015625,
514
+ "learning_rate": 4.75e-06,
515
+ "loss": 0.5145,
516
+ "step": 39
517
+ },
518
+ {
519
+ "Batch Mean": 0.23680943250656128,
520
+ "accuracy": 0.7890625,
521
+ "epoch": 0.0975,
522
+ "step": 39
523
+ },
524
+ {
525
+ "epoch": 0.1,
526
+ "grad_norm": 5.057112693786621,
527
+ "learning_rate": 4.736842105263158e-06,
528
+ "loss": 0.4793,
529
+ "step": 40
530
+ },
531
+ {
532
+ "Batch Mean": -0.2819175720214844,
533
+ "accuracy": 0.75,
534
+ "epoch": 0.1,
535
+ "step": 40
536
+ },
537
+ {
538
+ "epoch": 0.1025,
539
+ "grad_norm": 5.986076831817627,
540
+ "learning_rate": 4.723684210526316e-06,
541
+ "loss": 0.4989,
542
+ "step": 41
543
+ },
544
+ {
545
+ "Batch Mean": -0.2952081263065338,
546
+ "accuracy": 0.765625,
547
+ "epoch": 0.1025,
548
+ "step": 41
549
+ },
550
+ {
551
+ "epoch": 0.105,
552
+ "grad_norm": 6.123879432678223,
553
+ "learning_rate": 4.710526315789474e-06,
554
+ "loss": 0.4959,
555
+ "step": 42
556
+ },
557
+ {
558
+ "Batch Mean": -0.5327777862548828,
559
+ "accuracy": 0.8359375,
560
+ "epoch": 0.105,
561
+ "step": 42
562
+ },
563
+ {
564
+ "epoch": 0.1075,
565
+ "grad_norm": 7.773658752441406,
566
+ "learning_rate": 4.697368421052632e-06,
567
+ "loss": 0.4501,
568
+ "step": 43
569
+ },
570
+ {
571
+ "Batch Mean": -0.00808095932006836,
572
+ "accuracy": 0.7265625,
573
+ "epoch": 0.1075,
574
+ "step": 43
575
+ },
576
+ {
577
+ "epoch": 0.11,
578
+ "grad_norm": 6.165060520172119,
579
+ "learning_rate": 4.68421052631579e-06,
580
+ "loss": 0.4952,
581
+ "step": 44
582
+ },
583
+ {
584
+ "Batch Mean": 0.23638486862182617,
585
+ "accuracy": 0.7109375,
586
+ "epoch": 0.11,
587
+ "step": 44
588
+ },
589
+ {
590
+ "epoch": 0.1125,
591
+ "grad_norm": 6.963595390319824,
592
+ "learning_rate": 4.671052631578948e-06,
593
+ "loss": 0.5261,
594
+ "step": 45
595
+ },
596
+ {
597
+ "Batch Mean": 0.07831740379333496,
598
+ "accuracy": 0.8125,
599
+ "epoch": 0.1125,
600
+ "step": 45
601
+ },
602
+ {
603
+ "epoch": 0.115,
604
+ "grad_norm": 5.393492221832275,
605
+ "learning_rate": 4.657894736842106e-06,
606
+ "loss": 0.405,
607
+ "step": 46
608
+ },
609
+ {
610
+ "Batch Mean": 0.10195636749267578,
611
+ "accuracy": 0.75,
612
+ "epoch": 0.115,
613
+ "step": 46
614
+ },
615
+ {
616
+ "epoch": 0.1175,
617
+ "grad_norm": 9.352888107299805,
618
+ "learning_rate": 4.6447368421052635e-06,
619
+ "loss": 0.5726,
620
+ "step": 47
621
+ },
622
+ {
623
+ "Batch Mean": 0.4460281729698181,
624
+ "accuracy": 0.7578125,
625
+ "epoch": 0.1175,
626
+ "step": 47
627
+ },
628
+ {
629
+ "epoch": 0.12,
630
+ "grad_norm": 9.130428314208984,
631
+ "learning_rate": 4.631578947368421e-06,
632
+ "loss": 0.5347,
633
+ "step": 48
634
+ },
635
+ {
636
+ "Batch Mean": -0.2610776424407959,
637
+ "accuracy": 0.796875,
638
+ "epoch": 0.12,
639
+ "step": 48
640
+ },
641
+ {
642
+ "epoch": 0.1225,
643
+ "grad_norm": 6.863037586212158,
644
+ "learning_rate": 4.618421052631579e-06,
645
+ "loss": 0.4456,
646
+ "step": 49
647
+ },
648
+ {
649
+ "Batch Mean": -0.19384944438934326,
650
+ "accuracy": 0.6328125,
651
+ "epoch": 0.1225,
652
+ "step": 49
653
+ },
654
+ {
655
+ "epoch": 0.125,
656
+ "grad_norm": 6.617422103881836,
657
+ "learning_rate": 4.605263157894737e-06,
658
+ "loss": 0.5905,
659
+ "step": 50
660
+ },
661
+ {
662
+ "Batch Mean": -0.4514150619506836,
663
+ "accuracy": 0.7890625,
664
+ "epoch": 0.125,
665
+ "step": 50
666
+ },
667
+ {
668
+ "epoch": 0.1275,
669
+ "grad_norm": 7.564980506896973,
670
+ "learning_rate": 4.592105263157895e-06,
671
+ "loss": 0.4885,
672
+ "step": 51
673
+ },
674
+ {
675
+ "Batch Mean": -0.003515481948852539,
676
+ "accuracy": 0.734375,
677
+ "epoch": 0.1275,
678
+ "step": 51
679
+ },
680
+ {
681
+ "epoch": 0.13,
682
+ "grad_norm": 5.258878707885742,
683
+ "learning_rate": 4.578947368421053e-06,
684
+ "loss": 0.5032,
685
+ "step": 52
686
+ },
687
+ {
688
+ "Batch Mean": -0.10907495021820068,
689
+ "accuracy": 0.71875,
690
+ "epoch": 0.13,
691
+ "step": 52
692
+ },
693
+ {
694
+ "epoch": 0.1325,
695
+ "grad_norm": 5.931639194488525,
696
+ "learning_rate": 4.565789473684211e-06,
697
+ "loss": 0.542,
698
+ "step": 53
699
+ },
700
+ {
701
+ "Batch Mean": 0.46248769760131836,
702
+ "accuracy": 0.7890625,
703
+ "epoch": 0.1325,
704
+ "step": 53
705
+ },
706
+ {
707
+ "epoch": 0.135,
708
+ "grad_norm": 7.1796112060546875,
709
+ "learning_rate": 4.552631578947369e-06,
710
+ "loss": 0.4685,
711
+ "step": 54
712
+ },
713
+ {
714
+ "Batch Mean": 0.1234641969203949,
715
+ "accuracy": 0.7265625,
716
+ "epoch": 0.135,
717
+ "step": 54
718
+ },
719
+ {
720
+ "epoch": 0.1375,
721
+ "grad_norm": 6.273733139038086,
722
+ "learning_rate": 4.539473684210527e-06,
723
+ "loss": 0.4989,
724
+ "step": 55
725
+ },
726
+ {
727
+ "Batch Mean": -0.15052831172943115,
728
+ "accuracy": 0.78125,
729
+ "epoch": 0.1375,
730
+ "step": 55
731
+ },
732
+ {
733
+ "epoch": 0.14,
734
+ "grad_norm": 5.630648612976074,
735
+ "learning_rate": 4.526315789473685e-06,
736
+ "loss": 0.4518,
737
+ "step": 56
738
+ },
739
+ {
740
+ "Batch Mean": 0.10203218460083008,
741
+ "accuracy": 0.75,
742
+ "epoch": 0.14,
743
+ "step": 56
744
+ },
745
+ {
746
+ "epoch": 0.1425,
747
+ "grad_norm": 5.465209484100342,
748
+ "learning_rate": 4.513157894736843e-06,
749
+ "loss": 0.4775,
750
+ "step": 57
751
+ },
752
+ {
753
+ "Batch Mean": -0.2146952748298645,
754
+ "accuracy": 0.7578125,
755
+ "epoch": 0.1425,
756
+ "step": 57
757
+ },
758
+ {
759
+ "epoch": 0.145,
760
+ "grad_norm": 5.516883373260498,
761
+ "learning_rate": 4.5e-06,
762
+ "loss": 0.4672,
763
+ "step": 58
764
+ },
765
+ {
766
+ "Batch Mean": 0.39426422119140625,
767
+ "accuracy": 0.7734375,
768
+ "epoch": 0.145,
769
+ "step": 58
770
+ },
771
+ {
772
+ "epoch": 0.1475,
773
+ "grad_norm": 6.986379146575928,
774
+ "learning_rate": 4.4868421052631584e-06,
775
+ "loss": 0.4851,
776
+ "step": 59
777
+ },
778
+ {
779
+ "Batch Mean": 0.1964409053325653,
780
+ "accuracy": 0.75,
781
+ "epoch": 0.1475,
782
+ "step": 59
783
+ },
784
+ {
785
+ "epoch": 0.15,
786
+ "grad_norm": 6.413231372833252,
787
+ "learning_rate": 4.473684210526316e-06,
788
+ "loss": 0.5073,
789
+ "step": 60
790
+ },
791
+ {
792
+ "Batch Mean": -0.21541327238082886,
793
+ "accuracy": 0.7890625,
794
+ "epoch": 0.15,
795
+ "step": 60
796
+ },
797
+ {
798
+ "epoch": 0.1525,
799
+ "grad_norm": 5.495061874389648,
800
+ "learning_rate": 4.460526315789474e-06,
801
+ "loss": 0.4751,
802
+ "step": 61
803
+ },
804
+ {
805
+ "Batch Mean": -0.3059917688369751,
806
+ "accuracy": 0.7890625,
807
+ "epoch": 0.1525,
808
+ "step": 61
809
+ },
810
+ {
811
+ "epoch": 0.155,
812
+ "grad_norm": 6.379850387573242,
813
+ "learning_rate": 4.447368421052632e-06,
814
+ "loss": 0.4679,
815
+ "step": 62
816
+ },
817
+ {
818
+ "Batch Mean": -0.5860270261764526,
819
+ "accuracy": 0.8046875,
820
+ "epoch": 0.155,
821
+ "step": 62
822
+ },
823
+ {
824
+ "epoch": 0.1575,
825
+ "grad_norm": 8.42182731628418,
826
+ "learning_rate": 4.43421052631579e-06,
827
+ "loss": 0.4152,
828
+ "step": 63
829
+ },
830
+ {
831
+ "Batch Mean": 0.14216375350952148,
832
+ "accuracy": 0.7578125,
833
+ "epoch": 0.1575,
834
+ "step": 63
835
+ },
836
+ {
837
+ "epoch": 0.16,
838
+ "grad_norm": 6.759493827819824,
839
+ "learning_rate": 4.4210526315789476e-06,
840
+ "loss": 0.4852,
841
+ "step": 64
842
+ },
843
+ {
844
+ "Batch Mean": 0.3515692353248596,
845
+ "accuracy": 0.796875,
846
+ "epoch": 0.16,
847
+ "step": 64
848
+ },
849
+ {
850
+ "epoch": 0.1625,
851
+ "grad_norm": 7.567401885986328,
852
+ "learning_rate": 4.407894736842105e-06,
853
+ "loss": 0.4449,
854
+ "step": 65
855
+ },
856
+ {
857
+ "Batch Mean": 0.281324565410614,
858
+ "accuracy": 0.765625,
859
+ "epoch": 0.1625,
860
+ "step": 65
861
+ },
862
+ {
863
+ "epoch": 0.165,
864
+ "grad_norm": 7.912868022918701,
865
+ "learning_rate": 4.394736842105263e-06,
866
+ "loss": 0.5717,
867
+ "step": 66
868
+ },
869
+ {
870
+ "Batch Mean": 0.07387387752532959,
871
+ "accuracy": 0.796875,
872
+ "epoch": 0.165,
873
+ "step": 66
874
+ },
875
+ {
876
+ "epoch": 0.1675,
877
+ "grad_norm": 5.737614631652832,
878
+ "learning_rate": 4.381578947368421e-06,
879
+ "loss": 0.4532,
880
+ "step": 67
881
+ },
882
+ {
883
+ "Batch Mean": -0.45137548446655273,
884
+ "accuracy": 0.7734375,
885
+ "epoch": 0.1675,
886
+ "step": 67
887
+ },
888
+ {
889
+ "epoch": 0.17,
890
+ "grad_norm": 9.204909324645996,
891
+ "learning_rate": 4.368421052631579e-06,
892
+ "loss": 0.501,
893
+ "step": 68
894
+ },
895
+ {
896
+ "Batch Mean": -0.12238574028015137,
897
+ "accuracy": 0.828125,
898
+ "epoch": 0.17,
899
+ "step": 68
900
+ },
901
+ {
902
+ "epoch": 0.1725,
903
+ "grad_norm": 6.6219162940979,
904
+ "learning_rate": 4.3552631578947375e-06,
905
+ "loss": 0.416,
906
+ "step": 69
907
+ },
908
+ {
909
+ "Batch Mean": 0.06974506378173828,
910
+ "accuracy": 0.78125,
911
+ "epoch": 0.1725,
912
+ "step": 69
913
+ },
914
+ {
915
+ "epoch": 0.175,
916
+ "grad_norm": 5.526142120361328,
917
+ "learning_rate": 4.342105263157895e-06,
918
+ "loss": 0.4364,
919
+ "step": 70
920
+ },
921
+ {
922
+ "Batch Mean": 0.3401278257369995,
923
+ "accuracy": 0.8359375,
924
+ "epoch": 0.175,
925
+ "step": 70
926
+ },
927
+ {
928
+ "epoch": 0.1775,
929
+ "grad_norm": 6.567529678344727,
930
+ "learning_rate": 4.328947368421053e-06,
931
+ "loss": 0.4396,
932
+ "step": 71
933
+ },
934
+ {
935
+ "Batch Mean": -0.12450069189071655,
936
+ "accuracy": 0.75,
937
+ "epoch": 0.1775,
938
+ "step": 71
939
+ },
940
+ {
941
+ "epoch": 0.18,
942
+ "grad_norm": 6.054138660430908,
943
+ "learning_rate": 4.315789473684211e-06,
944
+ "loss": 0.4604,
945
+ "step": 72
946
+ },
947
+ {
948
+ "Batch Mean": 0.0036773681640625,
949
+ "accuracy": 0.7890625,
950
+ "epoch": 0.18,
951
+ "step": 72
952
+ },
953
+ {
954
+ "epoch": 0.1825,
955
+ "grad_norm": 6.112196445465088,
956
+ "learning_rate": 4.302631578947369e-06,
957
+ "loss": 0.4091,
958
+ "step": 73
959
+ },
960
+ {
961
+ "Batch Mean": -0.3432164192199707,
962
+ "accuracy": 0.7890625,
963
+ "epoch": 0.1825,
964
+ "step": 73
965
+ },
966
+ {
967
+ "epoch": 0.185,
968
+ "grad_norm": 6.806588649749756,
969
+ "learning_rate": 4.289473684210527e-06,
970
+ "loss": 0.4194,
971
+ "step": 74
972
+ },
973
+ {
974
+ "Batch Mean": -0.10890483856201172,
975
+ "accuracy": 0.671875,
976
+ "epoch": 0.185,
977
+ "step": 74
978
+ },
979
+ {
980
+ "epoch": 0.1875,
981
+ "grad_norm": 7.000553131103516,
982
+ "learning_rate": 4.276315789473684e-06,
983
+ "loss": 0.5318,
984
+ "step": 75
985
+ },
986
+ {
987
+ "Batch Mean": 0.6419280171394348,
988
+ "accuracy": 0.7265625,
989
+ "epoch": 0.1875,
990
+ "step": 75
991
+ },
992
+ {
993
+ "epoch": 0.19,
994
+ "grad_norm": 8.422764778137207,
995
+ "learning_rate": 4.2631578947368425e-06,
996
+ "loss": 0.4539,
997
+ "step": 76
998
+ },
999
+ {
1000
+ "Batch Mean": 0.28451067209243774,
1001
+ "accuracy": 0.7734375,
1002
+ "epoch": 0.19,
1003
+ "step": 76
1004
+ },
1005
+ {
1006
+ "epoch": 0.1925,
1007
+ "grad_norm": 6.512566566467285,
1008
+ "learning_rate": 4.25e-06,
1009
+ "loss": 0.4522,
1010
+ "step": 77
1011
+ },
1012
+ {
1013
+ "Batch Mean": -0.07123541831970215,
1014
+ "accuracy": 0.8125,
1015
+ "epoch": 0.1925,
1016
+ "step": 77
1017
+ },
1018
+ {
1019
+ "epoch": 0.195,
1020
+ "grad_norm": 6.979062080383301,
1021
+ "learning_rate": 4.236842105263158e-06,
1022
+ "loss": 0.4827,
1023
+ "step": 78
1024
+ },
1025
+ {
1026
+ "Batch Mean": -0.2889130115509033,
1027
+ "accuracy": 0.71875,
1028
+ "epoch": 0.195,
1029
+ "step": 78
1030
+ },
1031
+ {
1032
+ "epoch": 0.1975,
1033
+ "grad_norm": 7.523491859436035,
1034
+ "learning_rate": 4.223684210526316e-06,
1035
+ "loss": 0.4501,
1036
+ "step": 79
1037
+ },
1038
+ {
1039
+ "Batch Mean": -0.2912619113922119,
1040
+ "accuracy": 0.8046875,
1041
+ "epoch": 0.1975,
1042
+ "step": 79
1043
+ },
1044
+ {
1045
+ "epoch": 0.2,
1046
+ "grad_norm": 6.1573662757873535,
1047
+ "learning_rate": 4.210526315789474e-06,
1048
+ "loss": 0.4537,
1049
+ "step": 80
1050
+ },
1051
+ {
1052
+ "Batch Mean": 0.07626897096633911,
1053
+ "accuracy": 0.84375,
1054
+ "epoch": 0.2,
1055
+ "step": 80
1056
+ },
1057
+ {
1058
+ "epoch": 0.2025,
1059
+ "grad_norm": 5.308783054351807,
1060
+ "learning_rate": 4.197368421052632e-06,
1061
+ "loss": 0.3777,
1062
+ "step": 81
1063
+ },
1064
+ {
1065
+ "Batch Mean": 0.44231414794921875,
1066
+ "accuracy": 0.78125,
1067
+ "epoch": 0.2025,
1068
+ "step": 81
1069
+ },
1070
+ {
1071
+ "epoch": 0.205,
1072
+ "grad_norm": 7.6725969314575195,
1073
+ "learning_rate": 4.18421052631579e-06,
1074
+ "loss": 0.4681,
1075
+ "step": 82
1076
+ },
1077
+ {
1078
+ "Batch Mean": 0.05066095292568207,
1079
+ "accuracy": 0.7734375,
1080
+ "epoch": 0.205,
1081
+ "step": 82
1082
+ },
1083
+ {
1084
+ "epoch": 0.2075,
1085
+ "grad_norm": 6.136054039001465,
1086
+ "learning_rate": 4.171052631578948e-06,
1087
+ "loss": 0.4111,
1088
+ "step": 83
1089
+ },
1090
+ {
1091
+ "Batch Mean": 0.11537289619445801,
1092
+ "accuracy": 0.8515625,
1093
+ "epoch": 0.2075,
1094
+ "step": 83
1095
+ },
1096
+ {
1097
+ "epoch": 0.21,
1098
+ "grad_norm": 5.31056022644043,
1099
+ "learning_rate": 4.157894736842106e-06,
1100
+ "loss": 0.345,
1101
+ "step": 84
1102
+ },
1103
+ {
1104
+ "Batch Mean": 0.05826067924499512,
1105
+ "accuracy": 0.734375,
1106
+ "epoch": 0.21,
1107
+ "step": 84
1108
+ },
1109
+ {
1110
+ "epoch": 0.2125,
1111
+ "grad_norm": 6.368407249450684,
1112
+ "learning_rate": 4.144736842105263e-06,
1113
+ "loss": 0.4834,
1114
+ "step": 85
1115
+ },
1116
+ {
1117
+ "Batch Mean": -0.05756664276123047,
1118
+ "accuracy": 0.75,
1119
+ "epoch": 0.2125,
1120
+ "step": 85
1121
+ },
1122
+ {
1123
+ "epoch": 0.215,
1124
+ "grad_norm": 7.063327312469482,
1125
+ "learning_rate": 4.1315789473684216e-06,
1126
+ "loss": 0.5013,
1127
+ "step": 86
1128
+ },
1129
+ {
1130
+ "Batch Mean": -0.08471214771270752,
1131
+ "accuracy": 0.8046875,
1132
+ "epoch": 0.215,
1133
+ "step": 86
1134
+ },
1135
+ {
1136
+ "epoch": 0.2175,
1137
+ "grad_norm": 6.508166313171387,
1138
+ "learning_rate": 4.118421052631579e-06,
1139
+ "loss": 0.4431,
1140
+ "step": 87
1141
+ },
1142
+ {
1143
+ "Batch Mean": -0.06070905923843384,
1144
+ "accuracy": 0.703125,
1145
+ "epoch": 0.2175,
1146
+ "step": 87
1147
+ },
1148
+ {
1149
+ "epoch": 0.22,
1150
+ "grad_norm": 7.8081583976745605,
1151
+ "learning_rate": 4.105263157894737e-06,
1152
+ "loss": 0.5481,
1153
+ "step": 88
1154
+ },
1155
+ {
1156
+ "Batch Mean": -0.15125751495361328,
1157
+ "accuracy": 0.8046875,
1158
+ "epoch": 0.22,
1159
+ "step": 88
1160
+ },
1161
+ {
1162
+ "epoch": 0.2225,
1163
+ "grad_norm": 5.806808948516846,
1164
+ "learning_rate": 4.092105263157895e-06,
1165
+ "loss": 0.3994,
1166
+ "step": 89
1167
+ },
1168
+ {
1169
+ "Batch Mean": -0.0017851591110229492,
1170
+ "accuracy": 0.828125,
1171
+ "epoch": 0.2225,
1172
+ "step": 89
1173
+ },
1174
+ {
1175
+ "epoch": 0.225,
1176
+ "grad_norm": 5.560466766357422,
1177
+ "learning_rate": 4.078947368421053e-06,
1178
+ "loss": 0.4,
1179
+ "step": 90
1180
+ },
1181
+ {
1182
+ "Batch Mean": 0.07748031616210938,
1183
+ "accuracy": 0.8046875,
1184
+ "epoch": 0.225,
1185
+ "step": 90
1186
+ },
1187
+ {
1188
+ "epoch": 0.2275,
1189
+ "grad_norm": 5.754173278808594,
1190
+ "learning_rate": 4.065789473684211e-06,
1191
+ "loss": 0.4019,
1192
+ "step": 91
1193
+ },
1194
+ {
1195
+ "Batch Mean": -0.24073825776576996,
1196
+ "accuracy": 0.78125,
1197
+ "epoch": 0.2275,
1198
+ "step": 91
1199
+ },
1200
+ {
1201
+ "epoch": 0.23,
1202
+ "grad_norm": 6.231720447540283,
1203
+ "learning_rate": 4.052631578947368e-06,
1204
+ "loss": 0.4585,
1205
+ "step": 92
1206
+ },
1207
+ {
1208
+ "Batch Mean": -0.45170480012893677,
1209
+ "accuracy": 0.75,
1210
+ "epoch": 0.23,
1211
+ "step": 92
1212
+ },
1213
+ {
1214
+ "epoch": 0.2325,
1215
+ "grad_norm": 7.313357353210449,
1216
+ "learning_rate": 4.0394736842105265e-06,
1217
+ "loss": 0.4762,
1218
+ "step": 93
1219
+ },
1220
+ {
1221
+ "Batch Mean": 0.024792194366455078,
1222
+ "accuracy": 0.796875,
1223
+ "epoch": 0.2325,
1224
+ "step": 93
1225
+ },
1226
+ {
1227
+ "epoch": 0.235,
1228
+ "grad_norm": 4.933104515075684,
1229
+ "learning_rate": 4.026315789473684e-06,
1230
+ "loss": 0.4138,
1231
+ "step": 94
1232
+ },
1233
+ {
1234
+ "Batch Mean": -0.02751898765563965,
1235
+ "accuracy": 0.7421875,
1236
+ "epoch": 0.235,
1237
+ "step": 94
1238
+ },
1239
+ {
1240
+ "epoch": 0.2375,
1241
+ "grad_norm": 5.39032506942749,
1242
+ "learning_rate": 4.013157894736842e-06,
1243
+ "loss": 0.4787,
1244
+ "step": 95
1245
+ },
1246
+ {
1247
+ "Batch Mean": 0.06753873825073242,
1248
+ "accuracy": 0.8203125,
1249
+ "epoch": 0.2375,
1250
+ "step": 95
1251
+ },
1252
+ {
1253
+ "epoch": 0.24,
1254
+ "grad_norm": 5.1791462898254395,
1255
+ "learning_rate": 4.000000000000001e-06,
1256
+ "loss": 0.4488,
1257
+ "step": 96
1258
+ },
1259
+ {
1260
+ "Batch Mean": 0.22616100311279297,
1261
+ "accuracy": 0.828125,
1262
+ "epoch": 0.24,
1263
+ "step": 96
1264
+ },
1265
+ {
1266
+ "epoch": 0.2425,
1267
+ "grad_norm": 5.300809383392334,
1268
+ "learning_rate": 3.986842105263158e-06,
1269
+ "loss": 0.4142,
1270
+ "step": 97
1271
+ },
1272
+ {
1273
+ "Batch Mean": -0.15787070989608765,
1274
+ "accuracy": 0.8515625,
1275
+ "epoch": 0.2425,
1276
+ "step": 97
1277
+ },
1278
+ {
1279
+ "epoch": 0.245,
1280
+ "grad_norm": 5.704384803771973,
1281
+ "learning_rate": 3.9736842105263165e-06,
1282
+ "loss": 0.3797,
1283
+ "step": 98
1284
+ },
1285
+ {
1286
+ "Batch Mean": 0.13187718391418457,
1287
+ "accuracy": 0.8046875,
1288
+ "epoch": 0.245,
1289
+ "step": 98
1290
+ },
1291
+ {
1292
+ "epoch": 0.2475,
1293
+ "grad_norm": 6.045483589172363,
1294
+ "learning_rate": 3.960526315789474e-06,
1295
+ "loss": 0.5195,
1296
+ "step": 99
1297
+ },
1298
+ {
1299
+ "Batch Mean": -0.08533608913421631,
1300
+ "accuracy": 0.8203125,
1301
+ "epoch": 0.2475,
1302
+ "step": 99
1303
+ },
1304
+ {
1305
+ "epoch": 0.25,
1306
+ "grad_norm": 4.997817516326904,
1307
+ "learning_rate": 3.947368421052632e-06,
1308
+ "loss": 0.3816,
1309
+ "step": 100
1310
+ },
1311
+ {
1312
+ "Batch Mean": 0.028887659311294556,
1313
+ "accuracy": 0.7421875,
1314
+ "epoch": 0.25,
1315
+ "step": 100
1316
+ },
1317
+ {
1318
+ "epoch": 0.2525,
1319
+ "grad_norm": 5.863315105438232,
1320
+ "learning_rate": 3.93421052631579e-06,
1321
+ "loss": 0.478,
1322
+ "step": 101
1323
+ },
1324
+ {
1325
+ "Batch Mean": 0.17493167519569397,
1326
+ "accuracy": 0.796875,
1327
+ "epoch": 0.2525,
1328
+ "step": 101
1329
+ },
1330
+ {
1331
+ "epoch": 0.255,
1332
+ "grad_norm": 5.986959934234619,
1333
+ "learning_rate": 3.921052631578947e-06,
1334
+ "loss": 0.4283,
1335
+ "step": 102
1336
+ },
1337
+ {
1338
+ "Batch Mean": 0.19265401363372803,
1339
+ "accuracy": 0.8125,
1340
+ "epoch": 0.255,
1341
+ "step": 102
1342
+ },
1343
+ {
1344
+ "epoch": 0.2575,
1345
+ "grad_norm": 5.091299533843994,
1346
+ "learning_rate": 3.907894736842106e-06,
1347
+ "loss": 0.352,
1348
+ "step": 103
1349
+ },
1350
+ {
1351
+ "Batch Mean": -0.2604933977127075,
1352
+ "accuracy": 0.75,
1353
+ "epoch": 0.2575,
1354
+ "step": 103
1355
+ },
1356
+ {
1357
+ "epoch": 0.26,
1358
+ "grad_norm": 6.963299751281738,
1359
+ "learning_rate": 3.894736842105263e-06,
1360
+ "loss": 0.4583,
1361
+ "step": 104
1362
+ },
1363
+ {
1364
+ "Batch Mean": -0.21034908294677734,
1365
+ "accuracy": 0.7734375,
1366
+ "epoch": 0.26,
1367
+ "step": 104
1368
+ },
1369
+ {
1370
+ "epoch": 0.2625,
1371
+ "grad_norm": 7.000269889831543,
1372
+ "learning_rate": 3.8815789473684214e-06,
1373
+ "loss": 0.3837,
1374
+ "step": 105
1375
+ },
1376
+ {
1377
+ "Batch Mean": -0.10478854179382324,
1378
+ "accuracy": 0.8359375,
1379
+ "epoch": 0.2625,
1380
+ "step": 105
1381
+ },
1382
+ {
1383
+ "epoch": 0.265,
1384
+ "grad_norm": 6.25542688369751,
1385
+ "learning_rate": 3.868421052631579e-06,
1386
+ "loss": 0.3928,
1387
+ "step": 106
1388
+ },
1389
+ {
1390
+ "Batch Mean": 0.35255885124206543,
1391
+ "accuracy": 0.7734375,
1392
+ "epoch": 0.265,
1393
+ "step": 106
1394
+ },
1395
+ {
1396
+ "epoch": 0.2675,
1397
+ "grad_norm": 8.28545093536377,
1398
+ "learning_rate": 3.855263157894737e-06,
1399
+ "loss": 0.4785,
1400
+ "step": 107
1401
+ },
1402
+ {
1403
+ "Batch Mean": 0.4886665344238281,
1404
+ "accuracy": 0.7734375,
1405
+ "epoch": 0.2675,
1406
+ "step": 107
1407
+ },
1408
+ {
1409
+ "epoch": 0.27,
1410
+ "grad_norm": 9.611257553100586,
1411
+ "learning_rate": 3.842105263157895e-06,
1412
+ "loss": 0.4635,
1413
+ "step": 108
1414
+ },
1415
+ {
1416
+ "Batch Mean": -0.06474494934082031,
1417
+ "accuracy": 0.8046875,
1418
+ "epoch": 0.27,
1419
+ "step": 108
1420
+ },
1421
+ {
1422
+ "epoch": 0.2725,
1423
+ "grad_norm": 7.419112682342529,
1424
+ "learning_rate": 3.828947368421053e-06,
1425
+ "loss": 0.4225,
1426
+ "step": 109
1427
+ },
1428
+ {
1429
+ "Batch Mean": -0.12506628036499023,
1430
+ "accuracy": 0.8515625,
1431
+ "epoch": 0.2725,
1432
+ "step": 109
1433
+ },
1434
+ {
1435
+ "epoch": 0.275,
1436
+ "grad_norm": 6.5173020362854,
1437
+ "learning_rate": 3.815789473684211e-06,
1438
+ "loss": 0.3518,
1439
+ "step": 110
1440
+ },
1441
+ {
1442
+ "Batch Mean": -0.12815812230110168,
1443
+ "accuracy": 0.921875,
1444
+ "epoch": 0.275,
1445
+ "step": 110
1446
+ },
1447
+ {
1448
+ "epoch": 0.2775,
1449
+ "grad_norm": 5.361306667327881,
1450
+ "learning_rate": 3.802631578947369e-06,
1451
+ "loss": 0.269,
1452
+ "step": 111
1453
+ },
1454
+ {
1455
+ "Batch Mean": -0.20336151123046875,
1456
+ "accuracy": 0.890625,
1457
+ "epoch": 0.2775,
1458
+ "step": 111
1459
+ },
1460
+ {
1461
+ "epoch": 0.28,
1462
+ "grad_norm": 6.405649662017822,
1463
+ "learning_rate": 3.789473684210527e-06,
1464
+ "loss": 0.2563,
1465
+ "step": 112
1466
+ },
1467
+ {
1468
+ "Batch Mean": 0.22764039039611816,
1469
+ "accuracy": 0.8203125,
1470
+ "epoch": 0.28,
1471
+ "step": 112
1472
+ },
1473
+ {
1474
+ "epoch": 0.2825,
1475
+ "grad_norm": 8.156770706176758,
1476
+ "learning_rate": 3.7763157894736847e-06,
1477
+ "loss": 0.4163,
1478
+ "step": 113
1479
+ },
1480
+ {
1481
+ "Batch Mean": 0.27307558059692383,
1482
+ "accuracy": 0.859375,
1483
+ "epoch": 0.2825,
1484
+ "step": 113
1485
+ },
1486
+ {
1487
+ "epoch": 0.285,
1488
+ "grad_norm": 7.346747875213623,
1489
+ "learning_rate": 3.7631578947368426e-06,
1490
+ "loss": 0.3815,
1491
+ "step": 114
1492
+ },
1493
+ {
1494
+ "Batch Mean": 0.6259889602661133,
1495
+ "accuracy": 0.75,
1496
+ "epoch": 0.285,
1497
+ "step": 114
1498
+ },
1499
+ {
1500
+ "epoch": 0.2875,
1501
+ "grad_norm": 12.56270980834961,
1502
+ "learning_rate": 3.7500000000000005e-06,
1503
+ "loss": 0.5411,
1504
+ "step": 115
1505
+ },
1506
+ {
1507
+ "Batch Mean": -0.13174670934677124,
1508
+ "accuracy": 0.8046875,
1509
+ "epoch": 0.2875,
1510
+ "step": 115
1511
+ },
1512
+ {
1513
+ "epoch": 0.29,
1514
+ "grad_norm": 7.563482761383057,
1515
+ "learning_rate": 3.736842105263158e-06,
1516
+ "loss": 0.4455,
1517
+ "step": 116
1518
+ },
1519
+ {
1520
+ "Batch Mean": -0.8023077249526978,
1521
+ "accuracy": 0.8046875,
1522
+ "epoch": 0.29,
1523
+ "step": 116
1524
+ },
1525
+ {
1526
+ "epoch": 0.2925,
1527
+ "grad_norm": 10.422194480895996,
1528
+ "learning_rate": 3.723684210526316e-06,
1529
+ "loss": 0.3826,
1530
+ "step": 117
1531
+ },
1532
+ {
1533
+ "Batch Mean": -0.7135447263717651,
1534
+ "accuracy": 0.796875,
1535
+ "epoch": 0.2925,
1536
+ "step": 117
1537
+ },
1538
+ {
1539
+ "epoch": 0.295,
1540
+ "grad_norm": 9.252284049987793,
1541
+ "learning_rate": 3.710526315789474e-06,
1542
+ "loss": 0.4201,
1543
+ "step": 118
1544
+ },
1545
+ {
1546
+ "Batch Mean": -0.24731099605560303,
1547
+ "accuracy": 0.7578125,
1548
+ "epoch": 0.295,
1549
+ "step": 118
1550
+ },
1551
+ {
1552
+ "epoch": 0.2975,
1553
+ "grad_norm": 6.945714473724365,
1554
+ "learning_rate": 3.6973684210526317e-06,
1555
+ "loss": 0.461,
1556
+ "step": 119
1557
+ },
1558
+ {
1559
+ "Batch Mean": 0.4304164946079254,
1560
+ "accuracy": 0.8359375,
1561
+ "epoch": 0.2975,
1562
+ "step": 119
1563
+ },
1564
+ {
1565
+ "epoch": 0.3,
1566
+ "grad_norm": 7.393038749694824,
1567
+ "learning_rate": 3.6842105263157896e-06,
1568
+ "loss": 0.3897,
1569
+ "step": 120
1570
+ },
1571
+ {
1572
+ "Batch Mean": 0.24881935119628906,
1573
+ "accuracy": 0.7890625,
1574
+ "epoch": 0.3,
1575
+ "step": 120
1576
+ },
1577
+ {
1578
+ "epoch": 0.3025,
1579
+ "grad_norm": 6.129741668701172,
1580
+ "learning_rate": 3.6710526315789476e-06,
1581
+ "loss": 0.3894,
1582
+ "step": 121
1583
+ },
1584
+ {
1585
+ "Batch Mean": 0.09764862060546875,
1586
+ "accuracy": 0.828125,
1587
+ "epoch": 0.3025,
1588
+ "step": 121
1589
+ },
1590
+ {
1591
+ "epoch": 0.305,
1592
+ "grad_norm": 5.265136241912842,
1593
+ "learning_rate": 3.657894736842106e-06,
1594
+ "loss": 0.3733,
1595
+ "step": 122
1596
+ },
1597
+ {
1598
+ "Batch Mean": 0.17956316471099854,
1599
+ "accuracy": 0.8046875,
1600
+ "epoch": 0.305,
1601
+ "step": 122
1602
+ },
1603
+ {
1604
+ "epoch": 0.3075,
1605
+ "grad_norm": 4.876620769500732,
1606
+ "learning_rate": 3.644736842105264e-06,
1607
+ "loss": 0.3689,
1608
+ "step": 123
1609
+ },
1610
+ {
1611
+ "Batch Mean": 0.19482755661010742,
1612
+ "accuracy": 0.8203125,
1613
+ "epoch": 0.3075,
1614
+ "step": 123
1615
+ },
1616
+ {
1617
+ "epoch": 0.31,
1618
+ "grad_norm": 6.0671162605285645,
1619
+ "learning_rate": 3.6315789473684217e-06,
1620
+ "loss": 0.4151,
1621
+ "step": 124
1622
+ },
1623
+ {
1624
+ "Batch Mean": -0.07992386817932129,
1625
+ "accuracy": 0.828125,
1626
+ "epoch": 0.31,
1627
+ "step": 124
1628
+ },
1629
+ {
1630
+ "epoch": 0.3125,
1631
+ "grad_norm": 5.630014419555664,
1632
+ "learning_rate": 3.618421052631579e-06,
1633
+ "loss": 0.406,
1634
+ "step": 125
1635
+ },
1636
+ {
1637
+ "Batch Mean": -0.01944279670715332,
1638
+ "accuracy": 0.8515625,
1639
+ "epoch": 0.3125,
1640
+ "step": 125
1641
+ },
1642
+ {
1643
+ "epoch": 0.315,
1644
+ "grad_norm": 5.250101566314697,
1645
+ "learning_rate": 3.605263157894737e-06,
1646
+ "loss": 0.3816,
1647
+ "step": 126
1648
+ },
1649
+ {
1650
+ "Batch Mean": -0.18266761302947998,
1651
+ "accuracy": 0.8203125,
1652
+ "epoch": 0.315,
1653
+ "step": 126
1654
+ },
1655
+ {
1656
+ "epoch": 0.3175,
1657
+ "grad_norm": 6.644626617431641,
1658
+ "learning_rate": 3.592105263157895e-06,
1659
+ "loss": 0.4098,
1660
+ "step": 127
1661
+ },
1662
+ {
1663
+ "Batch Mean": 0.12618303298950195,
1664
+ "accuracy": 0.8359375,
1665
+ "epoch": 0.3175,
1666
+ "step": 127
1667
+ },
1668
+ {
1669
+ "epoch": 0.32,
1670
+ "grad_norm": 5.627920627593994,
1671
+ "learning_rate": 3.578947368421053e-06,
1672
+ "loss": 0.3854,
1673
+ "step": 128
1674
+ },
1675
+ {
1676
+ "Batch Mean": -0.33390331268310547,
1677
+ "accuracy": 0.8046875,
1678
+ "epoch": 0.32,
1679
+ "step": 128
1680
+ },
1681
+ {
1682
+ "epoch": 0.3225,
1683
+ "grad_norm": 7.37267541885376,
1684
+ "learning_rate": 3.565789473684211e-06,
1685
+ "loss": 0.4615,
1686
+ "step": 129
1687
+ },
1688
+ {
1689
+ "Batch Mean": -0.06647157669067383,
1690
+ "accuracy": 0.8125,
1691
+ "epoch": 0.3225,
1692
+ "step": 129
1693
+ },
1694
+ {
1695
+ "epoch": 0.325,
1696
+ "grad_norm": 6.135495185852051,
1697
+ "learning_rate": 3.5526315789473687e-06,
1698
+ "loss": 0.3621,
1699
+ "step": 130
1700
+ },
1701
+ {
1702
+ "Batch Mean": 0.4405427575111389,
1703
+ "accuracy": 0.75,
1704
+ "epoch": 0.325,
1705
+ "step": 130
1706
+ },
1707
+ {
1708
+ "epoch": 0.3275,
1709
+ "grad_norm": 8.818106651306152,
1710
+ "learning_rate": 3.5394736842105266e-06,
1711
+ "loss": 0.5184,
1712
+ "step": 131
1713
+ },
1714
+ {
1715
+ "Batch Mean": -0.026287078857421875,
1716
+ "accuracy": 0.859375,
1717
+ "epoch": 0.3275,
1718
+ "step": 131
1719
+ },
1720
+ {
1721
+ "epoch": 0.33,
1722
+ "grad_norm": 5.420790195465088,
1723
+ "learning_rate": 3.5263157894736846e-06,
1724
+ "loss": 0.329,
1725
+ "step": 132
1726
+ },
1727
+ {
1728
+ "Batch Mean": 0.05462455749511719,
1729
+ "accuracy": 0.796875,
1730
+ "epoch": 0.33,
1731
+ "step": 132
1732
+ },
1733
+ {
1734
+ "epoch": 0.3325,
1735
+ "grad_norm": 6.507498264312744,
1736
+ "learning_rate": 3.513157894736842e-06,
1737
+ "loss": 0.4115,
1738
+ "step": 133
1739
+ },
1740
+ {
1741
+ "Batch Mean": -0.24898433685302734,
1742
+ "accuracy": 0.765625,
1743
+ "epoch": 0.3325,
1744
+ "step": 133
1745
+ },
1746
+ {
1747
+ "epoch": 0.335,
1748
+ "grad_norm": 7.103653430938721,
1749
+ "learning_rate": 3.5e-06,
1750
+ "loss": 0.47,
1751
+ "step": 134
1752
+ },
1753
+ {
1754
+ "Batch Mean": 0.0019243955612182617,
1755
+ "accuracy": 0.7890625,
1756
+ "epoch": 0.335,
1757
+ "step": 134
1758
+ },
1759
+ {
1760
+ "epoch": 0.3375,
1761
+ "grad_norm": 6.966567039489746,
1762
+ "learning_rate": 3.486842105263158e-06,
1763
+ "loss": 0.4961,
1764
+ "step": 135
1765
+ },
1766
+ {
1767
+ "Batch Mean": -0.3426704406738281,
1768
+ "accuracy": 0.8515625,
1769
+ "epoch": 0.3375,
1770
+ "step": 135
1771
+ },
1772
+ {
1773
+ "epoch": 0.34,
1774
+ "grad_norm": 6.283776760101318,
1775
+ "learning_rate": 3.473684210526316e-06,
1776
+ "loss": 0.3601,
1777
+ "step": 136
1778
+ },
1779
+ {
1780
+ "Batch Mean": -0.20534992218017578,
1781
+ "accuracy": 0.8203125,
1782
+ "epoch": 0.34,
1783
+ "step": 136
1784
+ },
1785
+ {
1786
+ "epoch": 0.3425,
1787
+ "grad_norm": 6.146775245666504,
1788
+ "learning_rate": 3.460526315789474e-06,
1789
+ "loss": 0.3778,
1790
+ "step": 137
1791
+ },
1792
+ {
1793
+ "Batch Mean": 0.08529424667358398,
1794
+ "accuracy": 0.8359375,
1795
+ "epoch": 0.3425,
1796
+ "step": 137
1797
+ },
1798
+ {
1799
+ "epoch": 0.345,
1800
+ "grad_norm": 6.416910171508789,
1801
+ "learning_rate": 3.447368421052632e-06,
1802
+ "loss": 0.4167,
1803
+ "step": 138
1804
+ },
1805
+ {
1806
+ "Batch Mean": -0.047773122787475586,
1807
+ "accuracy": 0.8828125,
1808
+ "epoch": 0.345,
1809
+ "step": 138
1810
+ },
1811
+ {
1812
+ "epoch": 0.3475,
1813
+ "grad_norm": 5.484972953796387,
1814
+ "learning_rate": 3.43421052631579e-06,
1815
+ "loss": 0.3506,
1816
+ "step": 139
1817
+ },
1818
+ {
1819
+ "Batch Mean": 0.5931057929992676,
1820
+ "accuracy": 0.828125,
1821
+ "epoch": 0.3475,
1822
+ "step": 139
1823
+ },
1824
+ {
1825
+ "epoch": 0.35,
1826
+ "grad_norm": 7.790515899658203,
1827
+ "learning_rate": 3.421052631578948e-06,
1828
+ "loss": 0.3479,
1829
+ "step": 140
1830
+ },
1831
+ {
1832
+ "Batch Mean": 0.15590977668762207,
1833
+ "accuracy": 0.84375,
1834
+ "epoch": 0.35,
1835
+ "step": 140
1836
+ },
1837
+ {
1838
+ "epoch": 0.3525,
1839
+ "grad_norm": 6.013650417327881,
1840
+ "learning_rate": 3.4078947368421057e-06,
1841
+ "loss": 0.3612,
1842
+ "step": 141
1843
+ },
1844
+ {
1845
+ "Batch Mean": 0.46294069290161133,
1846
+ "accuracy": 0.78125,
1847
+ "epoch": 0.3525,
1848
+ "step": 141
1849
+ },
1850
+ {
1851
+ "epoch": 0.355,
1852
+ "grad_norm": 8.1344633102417,
1853
+ "learning_rate": 3.3947368421052636e-06,
1854
+ "loss": 0.4946,
1855
+ "step": 142
1856
+ },
1857
+ {
1858
+ "Batch Mean": -0.12668347358703613,
1859
+ "accuracy": 0.796875,
1860
+ "epoch": 0.355,
1861
+ "step": 142
1862
+ },
1863
+ {
1864
+ "epoch": 0.3575,
1865
+ "grad_norm": 5.713737487792969,
1866
+ "learning_rate": 3.381578947368421e-06,
1867
+ "loss": 0.3976,
1868
+ "step": 143
1869
+ },
1870
+ {
1871
+ "Batch Mean": -0.4500846862792969,
1872
+ "accuracy": 0.8203125,
1873
+ "epoch": 0.3575,
1874
+ "step": 143
1875
+ },
1876
+ {
1877
+ "epoch": 0.36,
1878
+ "grad_norm": 7.036086559295654,
1879
+ "learning_rate": 3.368421052631579e-06,
1880
+ "loss": 0.3463,
1881
+ "step": 144
1882
+ },
1883
+ {
1884
+ "Batch Mean": -0.37799644470214844,
1885
+ "accuracy": 0.7890625,
1886
+ "epoch": 0.36,
1887
+ "step": 144
1888
+ },
1889
+ {
1890
+ "epoch": 0.3625,
1891
+ "grad_norm": 6.1970062255859375,
1892
+ "learning_rate": 3.355263157894737e-06,
1893
+ "loss": 0.3877,
1894
+ "step": 145
1895
+ },
1896
+ {
1897
+ "Batch Mean": -0.10559439659118652,
1898
+ "accuracy": 0.7578125,
1899
+ "epoch": 0.3625,
1900
+ "step": 145
1901
+ },
1902
+ {
1903
+ "epoch": 0.365,
1904
+ "grad_norm": 5.835550308227539,
1905
+ "learning_rate": 3.342105263157895e-06,
1906
+ "loss": 0.3851,
1907
+ "step": 146
1908
+ },
1909
+ {
1910
+ "Batch Mean": 0.44306373596191406,
1911
+ "accuracy": 0.75,
1912
+ "epoch": 0.365,
1913
+ "step": 146
1914
+ },
1915
+ {
1916
+ "epoch": 0.3675,
1917
+ "grad_norm": 7.37814474105835,
1918
+ "learning_rate": 3.3289473684210528e-06,
1919
+ "loss": 0.4315,
1920
+ "step": 147
1921
+ },
1922
+ {
1923
+ "Batch Mean": -0.04085433483123779,
1924
+ "accuracy": 0.796875,
1925
+ "epoch": 0.3675,
1926
+ "step": 147
1927
+ },
1928
+ {
1929
+ "epoch": 0.37,
1930
+ "grad_norm": 6.159938812255859,
1931
+ "learning_rate": 3.3157894736842107e-06,
1932
+ "loss": 0.4498,
1933
+ "step": 148
1934
+ },
1935
+ {
1936
+ "Batch Mean": 0.40547609329223633,
1937
+ "accuracy": 0.828125,
1938
+ "epoch": 0.37,
1939
+ "step": 148
1940
+ },
1941
+ {
1942
+ "epoch": 0.3725,
1943
+ "grad_norm": 6.4657301902771,
1944
+ "learning_rate": 3.302631578947369e-06,
1945
+ "loss": 0.4086,
1946
+ "step": 149
1947
+ },
1948
+ {
1949
+ "Batch Mean": 0.18158531188964844,
1950
+ "accuracy": 0.890625,
1951
+ "epoch": 0.3725,
1952
+ "step": 149
1953
+ },
1954
+ {
1955
+ "epoch": 0.375,
1956
+ "grad_norm": 5.317295074462891,
1957
+ "learning_rate": 3.289473684210527e-06,
1958
+ "loss": 0.3154,
1959
+ "step": 150
1960
+ },
1961
+ {
1962
+ "Batch Mean": 0.09602212905883789,
1963
+ "accuracy": 0.8515625,
1964
+ "epoch": 0.375,
1965
+ "step": 150
1966
+ },
1967
+ {
1968
+ "epoch": 0.3775,
1969
+ "grad_norm": 5.428357124328613,
1970
+ "learning_rate": 3.276315789473685e-06,
1971
+ "loss": 0.3893,
1972
+ "step": 151
1973
+ },
1974
+ {
1975
+ "Batch Mean": -0.3176734447479248,
1976
+ "accuracy": 0.765625,
1977
+ "epoch": 0.3775,
1978
+ "step": 151
1979
+ },
1980
+ {
1981
+ "epoch": 0.38,
1982
+ "grad_norm": 6.5872087478637695,
1983
+ "learning_rate": 3.2631578947368423e-06,
1984
+ "loss": 0.4477,
1985
+ "step": 152
1986
+ },
1987
+ {
1988
+ "Batch Mean": -0.34884822368621826,
1989
+ "accuracy": 0.8515625,
1990
+ "epoch": 0.38,
1991
+ "step": 152
1992
+ },
1993
+ {
1994
+ "epoch": 0.3825,
1995
+ "grad_norm": 6.333802223205566,
1996
+ "learning_rate": 3.2500000000000002e-06,
1997
+ "loss": 0.3661,
1998
+ "step": 153
1999
+ },
2000
+ {
2001
+ "Batch Mean": -0.11426492035388947,
2002
+ "accuracy": 0.8203125,
2003
+ "epoch": 0.3825,
2004
+ "step": 153
2005
+ },
2006
+ {
2007
+ "epoch": 0.385,
2008
+ "grad_norm": 6.027217388153076,
2009
+ "learning_rate": 3.236842105263158e-06,
2010
+ "loss": 0.3967,
2011
+ "step": 154
2012
+ },
2013
+ {
2014
+ "Batch Mean": 0.2238612174987793,
2015
+ "accuracy": 0.828125,
2016
+ "epoch": 0.385,
2017
+ "step": 154
2018
+ },
2019
+ {
2020
+ "epoch": 0.3875,
2021
+ "grad_norm": 5.728042125701904,
2022
+ "learning_rate": 3.223684210526316e-06,
2023
+ "loss": 0.3469,
2024
+ "step": 155
2025
+ },
2026
+ {
2027
+ "Batch Mean": 0.2194676399230957,
2028
+ "accuracy": 0.8359375,
2029
+ "epoch": 0.3875,
2030
+ "step": 155
2031
+ },
2032
+ {
2033
+ "epoch": 0.39,
2034
+ "grad_norm": 6.083252906799316,
2035
+ "learning_rate": 3.210526315789474e-06,
2036
+ "loss": 0.3512,
2037
+ "step": 156
2038
+ },
2039
+ {
2040
+ "Batch Mean": 0.4024663269519806,
2041
+ "accuracy": 0.84375,
2042
+ "epoch": 0.39,
2043
+ "step": 156
2044
+ },
2045
+ {
2046
+ "epoch": 0.3925,
2047
+ "grad_norm": 6.562926292419434,
2048
+ "learning_rate": 3.197368421052632e-06,
2049
+ "loss": 0.3141,
2050
+ "step": 157
2051
+ },
2052
+ {
2053
+ "Batch Mean": -0.39385366439819336,
2054
+ "accuracy": 0.859375,
2055
+ "epoch": 0.3925,
2056
+ "step": 157
2057
+ },
2058
+ {
2059
+ "epoch": 0.395,
2060
+ "grad_norm": 7.200568199157715,
2061
+ "learning_rate": 3.1842105263157898e-06,
2062
+ "loss": 0.3309,
2063
+ "step": 158
2064
+ },
2065
+ {
2066
+ "Batch Mean": -0.46120989322662354,
2067
+ "accuracy": 0.796875,
2068
+ "epoch": 0.395,
2069
+ "step": 158
2070
+ },
2071
+ {
2072
+ "epoch": 0.3975,
2073
+ "grad_norm": 8.028575897216797,
2074
+ "learning_rate": 3.1710526315789477e-06,
2075
+ "loss": 0.4198,
2076
+ "step": 159
2077
+ },
2078
+ {
2079
+ "Batch Mean": -0.01939535140991211,
2080
+ "accuracy": 0.828125,
2081
+ "epoch": 0.3975,
2082
+ "step": 159
2083
+ },
2084
+ {
2085
+ "epoch": 0.4,
2086
+ "grad_norm": 6.117007732391357,
2087
+ "learning_rate": 3.157894736842105e-06,
2088
+ "loss": 0.3203,
2089
+ "step": 160
2090
+ },
2091
+ {
2092
+ "Batch Mean": 0.30785632133483887,
2093
+ "accuracy": 0.8046875,
2094
+ "epoch": 0.4,
2095
+ "step": 160
2096
+ },
2097
+ {
2098
+ "epoch": 0.4025,
2099
+ "grad_norm": 6.923008918762207,
2100
+ "learning_rate": 3.144736842105263e-06,
2101
+ "loss": 0.3664,
2102
+ "step": 161
2103
+ },
2104
+ {
2105
+ "Batch Mean": 0.7033977508544922,
2106
+ "accuracy": 0.828125,
2107
+ "epoch": 0.4025,
2108
+ "step": 161
2109
+ },
2110
+ {
2111
+ "epoch": 0.405,
2112
+ "grad_norm": 9.752437591552734,
2113
+ "learning_rate": 3.131578947368421e-06,
2114
+ "loss": 0.3907,
2115
+ "step": 162
2116
+ },
2117
+ {
2118
+ "Batch Mean": -0.347902774810791,
2119
+ "accuracy": 0.828125,
2120
+ "epoch": 0.405,
2121
+ "step": 162
2122
+ },
2123
+ {
2124
+ "epoch": 0.4075,
2125
+ "grad_norm": 7.6583991050720215,
2126
+ "learning_rate": 3.1184210526315793e-06,
2127
+ "loss": 0.374,
2128
+ "step": 163
2129
+ },
2130
+ {
2131
+ "Batch Mean": -0.569427490234375,
2132
+ "accuracy": 0.84375,
2133
+ "epoch": 0.4075,
2134
+ "step": 163
2135
+ },
2136
+ {
2137
+ "epoch": 0.41,
2138
+ "grad_norm": 8.497271537780762,
2139
+ "learning_rate": 3.1052631578947372e-06,
2140
+ "loss": 0.3917,
2141
+ "step": 164
2142
+ },
2143
+ {
2144
+ "Batch Mean": -0.094696044921875,
2145
+ "accuracy": 0.796875,
2146
+ "epoch": 0.41,
2147
+ "step": 164
2148
+ },
2149
+ {
2150
+ "epoch": 0.4125,
2151
+ "grad_norm": 8.36490249633789,
2152
+ "learning_rate": 3.092105263157895e-06,
2153
+ "loss": 0.4532,
2154
+ "step": 165
2155
+ },
2156
+ {
2157
+ "Batch Mean": -0.3759317398071289,
2158
+ "accuracy": 0.859375,
2159
+ "epoch": 0.4125,
2160
+ "step": 165
2161
+ },
2162
+ {
2163
+ "epoch": 0.415,
2164
+ "grad_norm": 7.4028425216674805,
2165
+ "learning_rate": 3.078947368421053e-06,
2166
+ "loss": 0.3049,
2167
+ "step": 166
2168
+ },
2169
+ {
2170
+ "Batch Mean": 0.3960217833518982,
2171
+ "accuracy": 0.828125,
2172
+ "epoch": 0.415,
2173
+ "step": 166
2174
+ },
2175
+ {
2176
+ "epoch": 0.4175,
2177
+ "grad_norm": 7.194099426269531,
2178
+ "learning_rate": 3.065789473684211e-06,
2179
+ "loss": 0.3577,
2180
+ "step": 167
2181
+ },
2182
+ {
2183
+ "Batch Mean": 0.5912597179412842,
2184
+ "accuracy": 0.875,
2185
+ "epoch": 0.4175,
2186
+ "step": 167
2187
+ },
2188
+ {
2189
+ "epoch": 0.42,
2190
+ "grad_norm": 7.954378128051758,
2191
+ "learning_rate": 3.052631578947369e-06,
2192
+ "loss": 0.3329,
2193
+ "step": 168
2194
+ },
2195
+ {
2196
+ "Batch Mean": -0.014994144439697266,
2197
+ "accuracy": 0.796875,
2198
+ "epoch": 0.42,
2199
+ "step": 168
2200
+ },
2201
+ {
2202
+ "epoch": 0.4225,
2203
+ "grad_norm": 7.277341365814209,
2204
+ "learning_rate": 3.0394736842105268e-06,
2205
+ "loss": 0.423,
2206
+ "step": 169
2207
+ },
2208
+ {
2209
+ "Batch Mean": 0.0011951625347137451,
2210
+ "accuracy": 0.8671875,
2211
+ "epoch": 0.4225,
2212
+ "step": 169
2213
+ },
2214
+ {
2215
+ "epoch": 0.425,
2216
+ "grad_norm": 6.068748950958252,
2217
+ "learning_rate": 3.0263157894736843e-06,
2218
+ "loss": 0.3711,
2219
+ "step": 170
2220
+ },
2221
+ {
2222
+ "Batch Mean": -0.23294401168823242,
2223
+ "accuracy": 0.9375,
2224
+ "epoch": 0.425,
2225
+ "step": 170
2226
+ },
2227
+ {
2228
+ "epoch": 0.4275,
2229
+ "grad_norm": 5.278029441833496,
2230
+ "learning_rate": 3.013157894736842e-06,
2231
+ "loss": 0.237,
2232
+ "step": 171
2233
+ },
2234
+ {
2235
+ "Batch Mean": -0.40133750438690186,
2236
+ "accuracy": 0.7890625,
2237
+ "epoch": 0.4275,
2238
+ "step": 171
2239
+ },
2240
+ {
2241
+ "epoch": 0.43,
2242
+ "grad_norm": 7.065173149108887,
2243
+ "learning_rate": 3e-06,
2244
+ "loss": 0.4043,
2245
+ "step": 172
2246
+ },
2247
+ {
2248
+ "Batch Mean": 0.1028299331665039,
2249
+ "accuracy": 0.84375,
2250
+ "epoch": 0.43,
2251
+ "step": 172
2252
+ },
2253
+ {
2254
+ "epoch": 0.4325,
2255
+ "grad_norm": 8.89666748046875,
2256
+ "learning_rate": 2.986842105263158e-06,
2257
+ "loss": 0.3427,
2258
+ "step": 173
2259
+ },
2260
+ {
2261
+ "Batch Mean": 0.08979487419128418,
2262
+ "accuracy": 0.828125,
2263
+ "epoch": 0.4325,
2264
+ "step": 173
2265
+ },
2266
+ {
2267
+ "epoch": 0.435,
2268
+ "grad_norm": 5.712543487548828,
2269
+ "learning_rate": 2.973684210526316e-06,
2270
+ "loss": 0.3642,
2271
+ "step": 174
2272
+ },
2273
+ {
2274
+ "Batch Mean": 0.6362553834915161,
2275
+ "accuracy": 0.84375,
2276
+ "epoch": 0.435,
2277
+ "step": 174
2278
+ },
2279
+ {
2280
+ "epoch": 0.4375,
2281
+ "grad_norm": 8.968149185180664,
2282
+ "learning_rate": 2.960526315789474e-06,
2283
+ "loss": 0.3986,
2284
+ "step": 175
2285
+ },
2286
+ {
2287
+ "Batch Mean": 0.03002166748046875,
2288
+ "accuracy": 0.8125,
2289
+ "epoch": 0.4375,
2290
+ "step": 175
2291
+ },
2292
+ {
2293
+ "epoch": 0.44,
2294
+ "grad_norm": 5.981250286102295,
2295
+ "learning_rate": 2.9473684210526317e-06,
2296
+ "loss": 0.371,
2297
+ "step": 176
2298
+ },
2299
+ {
2300
+ "Batch Mean": 0.15925252437591553,
2301
+ "accuracy": 0.7578125,
2302
+ "epoch": 0.44,
2303
+ "step": 176
2304
+ },
2305
+ {
2306
+ "epoch": 0.4425,
2307
+ "grad_norm": 7.630130290985107,
2308
+ "learning_rate": 2.93421052631579e-06,
2309
+ "loss": 0.4573,
2310
+ "step": 177
2311
+ },
2312
+ {
2313
+ "Batch Mean": -0.5218077898025513,
2314
+ "accuracy": 0.875,
2315
+ "epoch": 0.4425,
2316
+ "step": 177
2317
+ },
2318
+ {
2319
+ "epoch": 0.445,
2320
+ "grad_norm": 8.40796184539795,
2321
+ "learning_rate": 2.921052631578948e-06,
2322
+ "loss": 0.318,
2323
+ "step": 178
2324
+ },
2325
+ {
2326
+ "Batch Mean": -0.21337127685546875,
2327
+ "accuracy": 0.8671875,
2328
+ "epoch": 0.445,
2329
+ "step": 178
2330
+ },
2331
+ {
2332
+ "epoch": 0.4475,
2333
+ "grad_norm": 6.911371231079102,
2334
+ "learning_rate": 2.907894736842106e-06,
2335
+ "loss": 0.3225,
2336
+ "step": 179
2337
+ },
2338
+ {
2339
+ "Batch Mean": -0.4858684539794922,
2340
+ "accuracy": 0.796875,
2341
+ "epoch": 0.4475,
2342
+ "step": 179
2343
+ },
2344
+ {
2345
+ "epoch": 0.45,
2346
+ "grad_norm": 7.585726737976074,
2347
+ "learning_rate": 2.8947368421052634e-06,
2348
+ "loss": 0.4169,
2349
+ "step": 180
2350
+ },
2351
+ {
2352
+ "Batch Mean": 0.6967126131057739,
2353
+ "accuracy": 0.8359375,
2354
+ "epoch": 0.45,
2355
+ "step": 180
2356
+ },
2357
+ {
2358
+ "epoch": 0.4525,
2359
+ "grad_norm": 9.311128616333008,
2360
+ "learning_rate": 2.8815789473684213e-06,
2361
+ "loss": 0.3541,
2362
+ "step": 181
2363
+ },
2364
+ {
2365
+ "Batch Mean": 0.40191876888275146,
2366
+ "accuracy": 0.875,
2367
+ "epoch": 0.4525,
2368
+ "step": 181
2369
+ },
2370
+ {
2371
+ "epoch": 0.455,
2372
+ "grad_norm": 6.452785015106201,
2373
+ "learning_rate": 2.868421052631579e-06,
2374
+ "loss": 0.2999,
2375
+ "step": 182
2376
+ },
2377
+ {
2378
+ "Batch Mean": 0.35803985595703125,
2379
+ "accuracy": 0.765625,
2380
+ "epoch": 0.455,
2381
+ "step": 182
2382
+ },
2383
+ {
2384
+ "epoch": 0.4575,
2385
+ "grad_norm": 7.8335418701171875,
2386
+ "learning_rate": 2.855263157894737e-06,
2387
+ "loss": 0.4661,
2388
+ "step": 183
2389
+ },
2390
+ {
2391
+ "Batch Mean": -0.17188113927841187,
2392
+ "accuracy": 0.8203125,
2393
+ "epoch": 0.4575,
2394
+ "step": 183
2395
+ },
2396
+ {
2397
+ "epoch": 0.46,
2398
+ "grad_norm": 6.696692943572998,
2399
+ "learning_rate": 2.842105263157895e-06,
2400
+ "loss": 0.4276,
2401
+ "step": 184
2402
+ },
2403
+ {
2404
+ "Batch Mean": -0.7287430763244629,
2405
+ "accuracy": 0.8125,
2406
+ "epoch": 0.46,
2407
+ "step": 184
2408
+ },
2409
+ {
2410
+ "epoch": 0.4625,
2411
+ "grad_norm": 9.841276168823242,
2412
+ "learning_rate": 2.828947368421053e-06,
2413
+ "loss": 0.4608,
2414
+ "step": 185
2415
+ },
2416
+ {
2417
+ "Batch Mean": -0.4493199586868286,
2418
+ "accuracy": 0.765625,
2419
+ "epoch": 0.4625,
2420
+ "step": 185
2421
+ },
2422
+ {
2423
+ "epoch": 0.465,
2424
+ "grad_norm": 6.939754486083984,
2425
+ "learning_rate": 2.815789473684211e-06,
2426
+ "loss": 0.385,
2427
+ "step": 186
2428
+ },
2429
+ {
2430
+ "Batch Mean": -0.001141861081123352,
2431
+ "accuracy": 0.796875,
2432
+ "epoch": 0.465,
2433
+ "step": 186
2434
+ },
2435
+ {
2436
+ "epoch": 0.4675,
2437
+ "grad_norm": 5.819330215454102,
2438
+ "learning_rate": 2.8026315789473683e-06,
2439
+ "loss": 0.3872,
2440
+ "step": 187
2441
+ },
2442
+ {
2443
+ "Batch Mean": 0.11795490980148315,
2444
+ "accuracy": 0.8984375,
2445
+ "epoch": 0.4675,
2446
+ "step": 187
2447
+ },
2448
+ {
2449
+ "epoch": 0.47,
2450
+ "grad_norm": 5.095602512359619,
2451
+ "learning_rate": 2.789473684210526e-06,
2452
+ "loss": 0.2691,
2453
+ "step": 188
2454
+ },
2455
+ {
2456
+ "Batch Mean": 0.0792817771434784,
2457
+ "accuracy": 0.7734375,
2458
+ "epoch": 0.47,
2459
+ "step": 188
2460
+ },
2461
+ {
2462
+ "epoch": 0.4725,
2463
+ "grad_norm": 6.671010971069336,
2464
+ "learning_rate": 2.776315789473684e-06,
2465
+ "loss": 0.4304,
2466
+ "step": 189
2467
+ },
2468
+ {
2469
+ "Batch Mean": 0.11675047874450684,
2470
+ "accuracy": 0.8828125,
2471
+ "epoch": 0.4725,
2472
+ "step": 189
2473
+ },
2474
+ {
2475
+ "epoch": 0.475,
2476
+ "grad_norm": 5.194698810577393,
2477
+ "learning_rate": 2.7631578947368424e-06,
2478
+ "loss": 0.3043,
2479
+ "step": 190
2480
+ },
2481
+ {
2482
+ "Batch Mean": 0.507703423500061,
2483
+ "accuracy": 0.8359375,
2484
+ "epoch": 0.475,
2485
+ "step": 190
2486
+ },
2487
+ {
2488
+ "epoch": 0.4775,
2489
+ "grad_norm": 8.995157241821289,
2490
+ "learning_rate": 2.7500000000000004e-06,
2491
+ "loss": 0.4023,
2492
+ "step": 191
2493
+ },
2494
+ {
2495
+ "Batch Mean": 0.007342934608459473,
2496
+ "accuracy": 0.8828125,
2497
+ "epoch": 0.4775,
2498
+ "step": 191
2499
+ },
2500
+ {
2501
+ "epoch": 0.48,
2502
+ "grad_norm": 4.653019428253174,
2503
+ "learning_rate": 2.7368421052631583e-06,
2504
+ "loss": 0.2997,
2505
+ "step": 192
2506
+ },
2507
+ {
2508
+ "Batch Mean": -0.11206340789794922,
2509
+ "accuracy": 0.84375,
2510
+ "epoch": 0.48,
2511
+ "step": 192
2512
+ },
2513
+ {
2514
+ "epoch": 0.4825,
2515
+ "grad_norm": 5.593299388885498,
2516
+ "learning_rate": 2.723684210526316e-06,
2517
+ "loss": 0.3592,
2518
+ "step": 193
2519
+ },
2520
+ {
2521
+ "Batch Mean": 0.34449005126953125,
2522
+ "accuracy": 0.8203125,
2523
+ "epoch": 0.4825,
2524
+ "step": 193
2525
+ },
2526
+ {
2527
+ "epoch": 0.485,
2528
+ "grad_norm": 7.729828834533691,
2529
+ "learning_rate": 2.710526315789474e-06,
2530
+ "loss": 0.4174,
2531
+ "step": 194
2532
+ },
2533
+ {
2534
+ "Batch Mean": 0.3511536121368408,
2535
+ "accuracy": 0.796875,
2536
+ "epoch": 0.485,
2537
+ "step": 194
2538
+ },
2539
+ {
2540
+ "epoch": 0.4875,
2541
+ "grad_norm": 6.8778791427612305,
2542
+ "learning_rate": 2.697368421052632e-06,
2543
+ "loss": 0.3958,
2544
+ "step": 195
2545
+ },
2546
+ {
2547
+ "Batch Mean": -0.4304494857788086,
2548
+ "accuracy": 0.828125,
2549
+ "epoch": 0.4875,
2550
+ "step": 195
2551
+ },
2552
+ {
2553
+ "epoch": 0.49,
2554
+ "grad_norm": 7.1837897300720215,
2555
+ "learning_rate": 2.68421052631579e-06,
2556
+ "loss": 0.3644,
2557
+ "step": 196
2558
+ },
2559
+ {
2560
+ "Batch Mean": -0.5402705669403076,
2561
+ "accuracy": 0.8828125,
2562
+ "epoch": 0.49,
2563
+ "step": 196
2564
+ },
2565
+ {
2566
+ "epoch": 0.4925,
2567
+ "grad_norm": 7.711959362030029,
2568
+ "learning_rate": 2.6710526315789474e-06,
2569
+ "loss": 0.3134,
2570
+ "step": 197
2571
+ },
2572
+ {
2573
+ "Batch Mean": -0.4601917266845703,
2574
+ "accuracy": 0.8203125,
2575
+ "epoch": 0.4925,
2576
+ "step": 197
2577
+ },
2578
+ {
2579
+ "epoch": 0.495,
2580
+ "grad_norm": 7.087433815002441,
2581
+ "learning_rate": 2.6578947368421053e-06,
2582
+ "loss": 0.3694,
2583
+ "step": 198
2584
+ },
2585
+ {
2586
+ "Batch Mean": 0.003908276557922363,
2587
+ "accuracy": 0.859375,
2588
+ "epoch": 0.495,
2589
+ "step": 198
2590
+ },
2591
+ {
2592
+ "epoch": 0.4975,
2593
+ "grad_norm": 5.323395252227783,
2594
+ "learning_rate": 2.644736842105263e-06,
2595
+ "loss": 0.3269,
2596
+ "step": 199
2597
+ },
2598
+ {
2599
+ "Batch Mean": 0.3632014989852905,
2600
+ "accuracy": 0.8828125,
2601
+ "epoch": 0.4975,
2602
+ "step": 199
2603
+ },
2604
+ {
2605
+ "epoch": 0.5,
2606
+ "grad_norm": 6.865387439727783,
2607
+ "learning_rate": 2.631578947368421e-06,
2608
+ "loss": 0.3261,
2609
+ "step": 200
2610
+ },
2611
+ {
2612
+ "Batch Mean": 0.3652181625366211,
2613
+ "accuracy": 0.796875,
2614
+ "epoch": 0.5,
2615
+ "step": 200
2616
+ },
2617
+ {
2618
+ "epoch": 0.5025,
2619
+ "grad_norm": 7.002910614013672,
2620
+ "learning_rate": 2.618421052631579e-06,
2621
+ "loss": 0.4199,
2622
+ "step": 201
2623
+ },
2624
+ {
2625
+ "Batch Mean": -0.0046329498291015625,
2626
+ "accuracy": 0.8515625,
2627
+ "epoch": 0.5025,
2628
+ "step": 201
2629
+ },
2630
+ {
2631
+ "epoch": 0.505,
2632
+ "grad_norm": 6.56704044342041,
2633
+ "learning_rate": 2.605263157894737e-06,
2634
+ "loss": 0.323,
2635
+ "step": 202
2636
+ },
2637
+ {
2638
+ "Batch Mean": 0.0460200309753418,
2639
+ "accuracy": 0.8828125,
2640
+ "epoch": 0.505,
2641
+ "step": 202
2642
+ },
2643
+ {
2644
+ "epoch": 0.5075,
2645
+ "grad_norm": 5.225709438323975,
2646
+ "learning_rate": 2.592105263157895e-06,
2647
+ "loss": 0.3021,
2648
+ "step": 203
2649
+ },
2650
+ {
2651
+ "Batch Mean": 0.11225366592407227,
2652
+ "accuracy": 0.8359375,
2653
+ "epoch": 0.5075,
2654
+ "step": 203
2655
+ },
2656
+ {
2657
+ "epoch": 0.51,
2658
+ "grad_norm": 6.092679023742676,
2659
+ "learning_rate": 2.578947368421053e-06,
2660
+ "loss": 0.3584,
2661
+ "step": 204
2662
+ },
2663
+ {
2664
+ "Batch Mean": -0.08475446701049805,
2665
+ "accuracy": 0.8125,
2666
+ "epoch": 0.51,
2667
+ "step": 204
2668
+ },
2669
+ {
2670
+ "epoch": 0.5125,
2671
+ "grad_norm": 6.27672004699707,
2672
+ "learning_rate": 2.565789473684211e-06,
2673
+ "loss": 0.3787,
2674
+ "step": 205
2675
+ },
2676
+ {
2677
+ "Batch Mean": 0.041245490312576294,
2678
+ "accuracy": 0.8125,
2679
+ "epoch": 0.5125,
2680
+ "step": 205
2681
+ },
2682
+ {
2683
+ "epoch": 0.515,
2684
+ "grad_norm": 6.466290473937988,
2685
+ "learning_rate": 2.552631578947369e-06,
2686
+ "loss": 0.422,
2687
+ "step": 206
2688
+ },
2689
+ {
2690
+ "Batch Mean": -0.4405149221420288,
2691
+ "accuracy": 0.8671875,
2692
+ "epoch": 0.515,
2693
+ "step": 206
2694
+ },
2695
+ {
2696
+ "epoch": 0.5175,
2697
+ "grad_norm": 6.9925456047058105,
2698
+ "learning_rate": 2.5394736842105265e-06,
2699
+ "loss": 0.3365,
2700
+ "step": 207
2701
+ },
2702
+ {
2703
+ "Batch Mean": -0.3760061264038086,
2704
+ "accuracy": 0.875,
2705
+ "epoch": 0.5175,
2706
+ "step": 207
2707
+ },
2708
+ {
2709
+ "epoch": 0.52,
2710
+ "grad_norm": 6.5773844718933105,
2711
+ "learning_rate": 2.5263157894736844e-06,
2712
+ "loss": 0.3214,
2713
+ "step": 208
2714
+ },
2715
+ {
2716
+ "Batch Mean": 0.4471302032470703,
2717
+ "accuracy": 0.8359375,
2718
+ "epoch": 0.52,
2719
+ "step": 208
2720
+ },
2721
+ {
2722
+ "epoch": 0.5225,
2723
+ "grad_norm": 7.389886379241943,
2724
+ "learning_rate": 2.5131578947368423e-06,
2725
+ "loss": 0.3702,
2726
+ "step": 209
2727
+ },
2728
+ {
2729
+ "Batch Mean": 0.08597373962402344,
2730
+ "accuracy": 0.828125,
2731
+ "epoch": 0.5225,
2732
+ "step": 209
2733
+ },
2734
+ {
2735
+ "epoch": 0.525,
2736
+ "grad_norm": 6.150123119354248,
2737
+ "learning_rate": 2.5e-06,
2738
+ "loss": 0.4026,
2739
+ "step": 210
2740
+ },
2741
+ {
2742
+ "Batch Mean": 0.20080137252807617,
2743
+ "accuracy": 0.8359375,
2744
+ "epoch": 0.525,
2745
+ "step": 210
2746
+ },
2747
+ {
2748
+ "epoch": 0.5275,
2749
+ "grad_norm": 6.605398654937744,
2750
+ "learning_rate": 2.486842105263158e-06,
2751
+ "loss": 0.4046,
2752
+ "step": 211
2753
+ },
2754
+ {
2755
+ "Batch Mean": 0.03975629806518555,
2756
+ "accuracy": 0.8125,
2757
+ "epoch": 0.5275,
2758
+ "step": 211
2759
+ },
2760
+ {
2761
+ "epoch": 0.53,
2762
+ "grad_norm": 6.139669418334961,
2763
+ "learning_rate": 2.473684210526316e-06,
2764
+ "loss": 0.3858,
2765
+ "step": 212
2766
+ },
2767
+ {
2768
+ "Batch Mean": 0.08810865879058838,
2769
+ "accuracy": 0.7578125,
2770
+ "epoch": 0.53,
2771
+ "step": 212
2772
+ },
2773
+ {
2774
+ "epoch": 0.5325,
2775
+ "grad_norm": 7.48892068862915,
2776
+ "learning_rate": 2.460526315789474e-06,
2777
+ "loss": 0.5241,
2778
+ "step": 213
2779
+ },
2780
+ {
2781
+ "Batch Mean": 0.02453136444091797,
2782
+ "accuracy": 0.8203125,
2783
+ "epoch": 0.5325,
2784
+ "step": 213
2785
+ },
2786
+ {
2787
+ "epoch": 0.535,
2788
+ "grad_norm": 5.409359455108643,
2789
+ "learning_rate": 2.447368421052632e-06,
2790
+ "loss": 0.3785,
2791
+ "step": 214
2792
+ },
2793
+ {
2794
+ "Batch Mean": -0.385115385055542,
2795
+ "accuracy": 0.7734375,
2796
+ "epoch": 0.535,
2797
+ "step": 214
2798
+ },
2799
+ {
2800
+ "epoch": 0.5375,
2801
+ "grad_norm": 6.92533540725708,
2802
+ "learning_rate": 2.4342105263157898e-06,
2803
+ "loss": 0.4084,
2804
+ "step": 215
2805
+ },
2806
+ {
2807
+ "Batch Mean": -0.4509839415550232,
2808
+ "accuracy": 0.8359375,
2809
+ "epoch": 0.5375,
2810
+ "step": 215
2811
+ },
2812
+ {
2813
+ "epoch": 0.54,
2814
+ "grad_norm": 6.682870388031006,
2815
+ "learning_rate": 2.4210526315789477e-06,
2816
+ "loss": 0.3596,
2817
+ "step": 216
2818
+ },
2819
+ {
2820
+ "Batch Mean": -0.1237635612487793,
2821
+ "accuracy": 0.8515625,
2822
+ "epoch": 0.54,
2823
+ "step": 216
2824
+ },
2825
+ {
2826
+ "epoch": 0.5425,
2827
+ "grad_norm": 5.399717330932617,
2828
+ "learning_rate": 2.4078947368421056e-06,
2829
+ "loss": 0.3281,
2830
+ "step": 217
2831
+ },
2832
+ {
2833
+ "Batch Mean": 0.13233089447021484,
2834
+ "accuracy": 0.8671875,
2835
+ "epoch": 0.5425,
2836
+ "step": 217
2837
+ },
2838
+ {
2839
+ "epoch": 0.545,
2840
+ "grad_norm": 5.121485233306885,
2841
+ "learning_rate": 2.3947368421052635e-06,
2842
+ "loss": 0.3375,
2843
+ "step": 218
2844
+ },
2845
+ {
2846
+ "Batch Mean": 0.2012614607810974,
2847
+ "accuracy": 0.859375,
2848
+ "epoch": 0.545,
2849
+ "step": 218
2850
+ },
2851
+ {
2852
+ "epoch": 0.5475,
2853
+ "grad_norm": 4.99008846282959,
2854
+ "learning_rate": 2.381578947368421e-06,
2855
+ "loss": 0.3365,
2856
+ "step": 219
2857
+ },
2858
+ {
2859
+ "Batch Mean": 0.5368151664733887,
2860
+ "accuracy": 0.8671875,
2861
+ "epoch": 0.5475,
2862
+ "step": 219
2863
+ },
2864
+ {
2865
+ "epoch": 0.55,
2866
+ "grad_norm": 6.544676303863525,
2867
+ "learning_rate": 2.368421052631579e-06,
2868
+ "loss": 0.3187,
2869
+ "step": 220
2870
+ },
2871
+ {
2872
+ "Batch Mean": 0.022375822067260742,
2873
+ "accuracy": 0.828125,
2874
+ "epoch": 0.55,
2875
+ "step": 220
2876
+ },
2877
+ {
2878
+ "epoch": 0.5525,
2879
+ "grad_norm": 6.009125232696533,
2880
+ "learning_rate": 2.355263157894737e-06,
2881
+ "loss": 0.3904,
2882
+ "step": 221
2883
+ },
2884
+ {
2885
+ "Batch Mean": 0.28800055384635925,
2886
+ "accuracy": 0.8125,
2887
+ "epoch": 0.5525,
2888
+ "step": 221
2889
+ },
2890
+ {
2891
+ "epoch": 0.555,
2892
+ "grad_norm": 6.6932268142700195,
2893
+ "learning_rate": 2.342105263157895e-06,
2894
+ "loss": 0.4334,
2895
+ "step": 222
2896
+ },
2897
+ {
2898
+ "Batch Mean": -0.05706942081451416,
2899
+ "accuracy": 0.8046875,
2900
+ "epoch": 0.555,
2901
+ "step": 222
2902
+ },
2903
+ {
2904
+ "epoch": 0.5575,
2905
+ "grad_norm": 5.802476406097412,
2906
+ "learning_rate": 2.328947368421053e-06,
2907
+ "loss": 0.4048,
2908
+ "step": 223
2909
+ },
2910
+ {
2911
+ "Batch Mean": -0.35072553157806396,
2912
+ "accuracy": 0.84375,
2913
+ "epoch": 0.5575,
2914
+ "step": 223
2915
+ },
2916
+ {
2917
+ "epoch": 0.56,
2918
+ "grad_norm": 6.107337474822998,
2919
+ "learning_rate": 2.3157894736842105e-06,
2920
+ "loss": 0.3219,
2921
+ "step": 224
2922
+ },
2923
+ {
2924
+ "Batch Mean": -0.7369738817214966,
2925
+ "accuracy": 0.7734375,
2926
+ "epoch": 0.56,
2927
+ "step": 224
2928
+ },
2929
+ {
2930
+ "epoch": 0.5625,
2931
+ "grad_norm": 9.2208890914917,
2932
+ "learning_rate": 2.3026315789473684e-06,
2933
+ "loss": 0.4371,
2934
+ "step": 225
2935
+ },
2936
+ {
2937
+ "Batch Mean": -0.1235361099243164,
2938
+ "accuracy": 0.8515625,
2939
+ "epoch": 0.5625,
2940
+ "step": 225
2941
+ },
2942
+ {
2943
+ "epoch": 0.565,
2944
+ "grad_norm": 5.8800506591796875,
2945
+ "learning_rate": 2.2894736842105263e-06,
2946
+ "loss": 0.3281,
2947
+ "step": 226
2948
+ },
2949
+ {
2950
+ "Batch Mean": -0.03460812568664551,
2951
+ "accuracy": 0.8671875,
2952
+ "epoch": 0.565,
2953
+ "step": 226
2954
+ },
2955
+ {
2956
+ "epoch": 0.5675,
2957
+ "grad_norm": 6.368298053741455,
2958
+ "learning_rate": 2.2763157894736847e-06,
2959
+ "loss": 0.2906,
2960
+ "step": 227
2961
+ },
2962
+ {
2963
+ "Batch Mean": 0.3625354766845703,
2964
+ "accuracy": 0.7265625,
2965
+ "epoch": 0.5675,
2966
+ "step": 227
2967
+ },
2968
+ {
2969
+ "epoch": 0.57,
2970
+ "grad_norm": 8.628252983093262,
2971
+ "learning_rate": 2.2631578947368426e-06,
2972
+ "loss": 0.5205,
2973
+ "step": 228
2974
+ },
2975
+ {
2976
+ "Batch Mean": 0.08192723989486694,
2977
+ "accuracy": 0.7578125,
2978
+ "epoch": 0.57,
2979
+ "step": 228
2980
+ },
2981
+ {
2982
+ "epoch": 0.5725,
2983
+ "grad_norm": 6.3980512619018555,
2984
+ "learning_rate": 2.25e-06,
2985
+ "loss": 0.4337,
2986
+ "step": 229
2987
+ },
2988
+ {
2989
+ "Batch Mean": -0.2664133310317993,
2990
+ "accuracy": 0.8046875,
2991
+ "epoch": 0.5725,
2992
+ "step": 229
2993
+ },
2994
+ {
2995
+ "epoch": 0.575,
2996
+ "grad_norm": 6.476391315460205,
2997
+ "learning_rate": 2.236842105263158e-06,
2998
+ "loss": 0.3604,
2999
+ "step": 230
3000
+ },
3001
+ {
3002
+ "Batch Mean": 0.4527122974395752,
3003
+ "accuracy": 0.796875,
3004
+ "epoch": 0.575,
3005
+ "step": 230
3006
+ },
3007
+ {
3008
+ "epoch": 0.5775,
3009
+ "grad_norm": 8.095312118530273,
3010
+ "learning_rate": 2.223684210526316e-06,
3011
+ "loss": 0.4297,
3012
+ "step": 231
3013
+ },
3014
+ {
3015
+ "Batch Mean": -0.08241510391235352,
3016
+ "accuracy": 0.8203125,
3017
+ "epoch": 0.5775,
3018
+ "step": 231
3019
+ },
3020
+ {
3021
+ "epoch": 0.58,
3022
+ "grad_norm": 5.840095043182373,
3023
+ "learning_rate": 2.2105263157894738e-06,
3024
+ "loss": 0.3712,
3025
+ "step": 232
3026
+ },
3027
+ {
3028
+ "Batch Mean": 0.04206228256225586,
3029
+ "accuracy": 0.8046875,
3030
+ "epoch": 0.58,
3031
+ "step": 232
3032
+ },
3033
+ {
3034
+ "epoch": 0.5825,
3035
+ "grad_norm": 5.922440528869629,
3036
+ "learning_rate": 2.1973684210526317e-06,
3037
+ "loss": 0.3937,
3038
+ "step": 233
3039
+ },
3040
+ {
3041
+ "Batch Mean": -0.1112813949584961,
3042
+ "accuracy": 0.8671875,
3043
+ "epoch": 0.5825,
3044
+ "step": 233
3045
+ },
3046
+ {
3047
+ "epoch": 0.585,
3048
+ "grad_norm": 4.804201126098633,
3049
+ "learning_rate": 2.1842105263157896e-06,
3050
+ "loss": 0.2852,
3051
+ "step": 234
3052
+ },
3053
+ {
3054
+ "Batch Mean": 0.18291091918945312,
3055
+ "accuracy": 0.7890625,
3056
+ "epoch": 0.585,
3057
+ "step": 234
3058
+ },
3059
+ {
3060
+ "epoch": 0.5875,
3061
+ "grad_norm": 6.333522796630859,
3062
+ "learning_rate": 2.1710526315789475e-06,
3063
+ "loss": 0.3854,
3064
+ "step": 235
3065
+ },
3066
+ {
3067
+ "Batch Mean": 0.20920276641845703,
3068
+ "accuracy": 0.8671875,
3069
+ "epoch": 0.5875,
3070
+ "step": 235
3071
+ },
3072
+ {
3073
+ "epoch": 0.59,
3074
+ "grad_norm": 5.435009479522705,
3075
+ "learning_rate": 2.1578947368421054e-06,
3076
+ "loss": 0.3728,
3077
+ "step": 236
3078
+ },
3079
+ {
3080
+ "Batch Mean": -0.10450601577758789,
3081
+ "accuracy": 0.8515625,
3082
+ "epoch": 0.59,
3083
+ "step": 236
3084
+ },
3085
+ {
3086
+ "epoch": 0.5925,
3087
+ "grad_norm": 4.914745330810547,
3088
+ "learning_rate": 2.1447368421052633e-06,
3089
+ "loss": 0.3217,
3090
+ "step": 237
3091
+ },
3092
+ {
3093
+ "Batch Mean": -0.7518494129180908,
3094
+ "accuracy": 0.8125,
3095
+ "epoch": 0.5925,
3096
+ "step": 237
3097
+ },
3098
+ {
3099
+ "epoch": 0.595,
3100
+ "grad_norm": 9.58519172668457,
3101
+ "learning_rate": 2.1315789473684212e-06,
3102
+ "loss": 0.3795,
3103
+ "step": 238
3104
+ },
3105
+ {
3106
+ "Batch Mean": 0.0718802809715271,
3107
+ "accuracy": 0.859375,
3108
+ "epoch": 0.595,
3109
+ "step": 238
3110
+ },
3111
+ {
3112
+ "epoch": 0.5975,
3113
+ "grad_norm": 5.099031448364258,
3114
+ "learning_rate": 2.118421052631579e-06,
3115
+ "loss": 0.3308,
3116
+ "step": 239
3117
+ },
3118
+ {
3119
+ "Batch Mean": 0.4419422149658203,
3120
+ "accuracy": 0.8203125,
3121
+ "epoch": 0.5975,
3122
+ "step": 239
3123
+ },
3124
+ {
3125
+ "epoch": 0.6,
3126
+ "grad_norm": 11.365894317626953,
3127
+ "learning_rate": 2.105263157894737e-06,
3128
+ "loss": 0.418,
3129
+ "step": 240
3130
+ },
3131
+ {
3132
+ "Batch Mean": 0.03586006164550781,
3133
+ "accuracy": 0.8203125,
3134
+ "epoch": 0.6,
3135
+ "step": 240
3136
+ },
3137
+ {
3138
+ "epoch": 0.6025,
3139
+ "grad_norm": 5.9789958000183105,
3140
+ "learning_rate": 2.092105263157895e-06,
3141
+ "loss": 0.4069,
3142
+ "step": 241
3143
+ },
3144
+ {
3145
+ "Batch Mean": 0.29011332988739014,
3146
+ "accuracy": 0.8359375,
3147
+ "epoch": 0.6025,
3148
+ "step": 241
3149
+ },
3150
+ {
3151
+ "epoch": 0.605,
3152
+ "grad_norm": 5.794040203094482,
3153
+ "learning_rate": 2.078947368421053e-06,
3154
+ "loss": 0.3484,
3155
+ "step": 242
3156
+ },
3157
+ {
3158
+ "Batch Mean": -0.5499505996704102,
3159
+ "accuracy": 0.8359375,
3160
+ "epoch": 0.605,
3161
+ "step": 242
3162
+ },
3163
+ {
3164
+ "epoch": 0.6075,
3165
+ "grad_norm": 8.262065887451172,
3166
+ "learning_rate": 2.0657894736842108e-06,
3167
+ "loss": 0.31,
3168
+ "step": 243
3169
+ },
3170
+ {
3171
+ "Batch Mean": 0.24885821342468262,
3172
+ "accuracy": 0.828125,
3173
+ "epoch": 0.6075,
3174
+ "step": 243
3175
+ },
3176
+ {
3177
+ "epoch": 0.61,
3178
+ "grad_norm": 6.190489292144775,
3179
+ "learning_rate": 2.0526315789473687e-06,
3180
+ "loss": 0.3916,
3181
+ "step": 244
3182
+ },
3183
+ {
3184
+ "Batch Mean": -0.26743316650390625,
3185
+ "accuracy": 0.8203125,
3186
+ "epoch": 0.61,
3187
+ "step": 244
3188
+ },
3189
+ {
3190
+ "epoch": 0.6125,
3191
+ "grad_norm": 6.024500846862793,
3192
+ "learning_rate": 2.0394736842105266e-06,
3193
+ "loss": 0.3776,
3194
+ "step": 245
3195
+ },
3196
+ {
3197
+ "Batch Mean": -0.23404550552368164,
3198
+ "accuracy": 0.7421875,
3199
+ "epoch": 0.6125,
3200
+ "step": 245
3201
+ },
3202
+ {
3203
+ "epoch": 0.615,
3204
+ "grad_norm": 7.985998630523682,
3205
+ "learning_rate": 2.026315789473684e-06,
3206
+ "loss": 0.534,
3207
+ "step": 246
3208
+ },
3209
+ {
3210
+ "Batch Mean": -0.15702039003372192,
3211
+ "accuracy": 0.8359375,
3212
+ "epoch": 0.615,
3213
+ "step": 246
3214
+ },
3215
+ {
3216
+ "epoch": 0.6175,
3217
+ "grad_norm": 5.515955924987793,
3218
+ "learning_rate": 2.013157894736842e-06,
3219
+ "loss": 0.3521,
3220
+ "step": 247
3221
+ },
3222
+ {
3223
+ "Batch Mean": 0.08024978637695312,
3224
+ "accuracy": 0.8125,
3225
+ "epoch": 0.6175,
3226
+ "step": 247
3227
+ },
3228
+ {
3229
+ "epoch": 0.62,
3230
+ "grad_norm": 5.263201713562012,
3231
+ "learning_rate": 2.0000000000000003e-06,
3232
+ "loss": 0.3411,
3233
+ "step": 248
3234
+ },
3235
+ {
3236
+ "Batch Mean": 0.4128882884979248,
3237
+ "accuracy": 0.8203125,
3238
+ "epoch": 0.62,
3239
+ "step": 248
3240
+ },
3241
+ {
3242
+ "epoch": 0.6225,
3243
+ "grad_norm": 6.7587103843688965,
3244
+ "learning_rate": 1.9868421052631582e-06,
3245
+ "loss": 0.415,
3246
+ "step": 249
3247
+ },
3248
+ {
3249
+ "Batch Mean": 0.2651102542877197,
3250
+ "accuracy": 0.8046875,
3251
+ "epoch": 0.6225,
3252
+ "step": 249
3253
+ },
3254
+ {
3255
+ "epoch": 0.625,
3256
+ "grad_norm": 5.891829013824463,
3257
+ "learning_rate": 1.973684210526316e-06,
3258
+ "loss": 0.3854,
3259
+ "step": 250
3260
+ },
3261
+ {
3262
+ "Batch Mean": 0.06268704682588577,
3263
+ "accuracy": 0.859375,
3264
+ "epoch": 0.625,
3265
+ "step": 250
3266
+ },
3267
+ {
3268
+ "epoch": 0.6275,
3269
+ "grad_norm": 4.907006740570068,
3270
+ "learning_rate": 1.9605263157894736e-06,
3271
+ "loss": 0.3142,
3272
+ "step": 251
3273
+ },
3274
+ {
3275
+ "Batch Mean": 0.009827375411987305,
3276
+ "accuracy": 0.84375,
3277
+ "epoch": 0.6275,
3278
+ "step": 251
3279
+ },
3280
+ {
3281
+ "epoch": 0.63,
3282
+ "grad_norm": 5.065036296844482,
3283
+ "learning_rate": 1.9473684210526315e-06,
3284
+ "loss": 0.366,
3285
+ "step": 252
3286
+ },
3287
+ {
3288
+ "Batch Mean": -0.12906122207641602,
3289
+ "accuracy": 0.859375,
3290
+ "epoch": 0.63,
3291
+ "step": 252
3292
+ },
3293
+ {
3294
+ "epoch": 0.6325,
3295
+ "grad_norm": 4.897366523742676,
3296
+ "learning_rate": 1.9342105263157895e-06,
3297
+ "loss": 0.3514,
3298
+ "step": 253
3299
+ },
3300
+ {
3301
+ "Batch Mean": -0.2323474884033203,
3302
+ "accuracy": 0.8125,
3303
+ "epoch": 0.6325,
3304
+ "step": 253
3305
+ },
3306
+ {
3307
+ "epoch": 0.635,
3308
+ "grad_norm": 5.733254909515381,
3309
+ "learning_rate": 1.9210526315789474e-06,
3310
+ "loss": 0.3787,
3311
+ "step": 254
3312
+ },
3313
+ {
3314
+ "Batch Mean": -0.1317148208618164,
3315
+ "accuracy": 0.75,
3316
+ "epoch": 0.635,
3317
+ "step": 254
3318
+ },
3319
+ {
3320
+ "epoch": 0.6375,
3321
+ "grad_norm": 6.474262714385986,
3322
+ "learning_rate": 1.9078947368421057e-06,
3323
+ "loss": 0.4739,
3324
+ "step": 255
3325
+ },
3326
+ {
3327
+ "Batch Mean": -0.0393298864364624,
3328
+ "accuracy": 0.8203125,
3329
+ "epoch": 0.6375,
3330
+ "step": 255
3331
+ },
3332
+ {
3333
+ "epoch": 0.64,
3334
+ "grad_norm": 4.841159820556641,
3335
+ "learning_rate": 1.8947368421052634e-06,
3336
+ "loss": 0.3731,
3337
+ "step": 256
3338
+ },
3339
+ {
3340
+ "Batch Mean": 0.10869312286376953,
3341
+ "accuracy": 0.8359375,
3342
+ "epoch": 0.64,
3343
+ "step": 256
3344
+ },
3345
+ {
3346
+ "epoch": 0.6425,
3347
+ "grad_norm": 5.361686706542969,
3348
+ "learning_rate": 1.8815789473684213e-06,
3349
+ "loss": 0.3779,
3350
+ "step": 257
3351
+ },
3352
+ {
3353
+ "Batch Mean": 0.0021914541721343994,
3354
+ "accuracy": 0.8125,
3355
+ "epoch": 0.6425,
3356
+ "step": 257
3357
+ },
3358
+ {
3359
+ "epoch": 0.645,
3360
+ "grad_norm": 4.836275100708008,
3361
+ "learning_rate": 1.868421052631579e-06,
3362
+ "loss": 0.3551,
3363
+ "step": 258
3364
+ },
3365
+ {
3366
+ "Batch Mean": -0.3041563034057617,
3367
+ "accuracy": 0.8125,
3368
+ "epoch": 0.645,
3369
+ "step": 258
3370
+ },
3371
+ {
3372
+ "epoch": 0.6475,
3373
+ "grad_norm": 5.775440692901611,
3374
+ "learning_rate": 1.855263157894737e-06,
3375
+ "loss": 0.3664,
3376
+ "step": 259
3377
+ },
3378
+ {
3379
+ "Batch Mean": 0.22134876251220703,
3380
+ "accuracy": 0.8515625,
3381
+ "epoch": 0.6475,
3382
+ "step": 259
3383
+ },
3384
+ {
3385
+ "epoch": 0.65,
3386
+ "grad_norm": 5.312914848327637,
3387
+ "learning_rate": 1.8421052631578948e-06,
3388
+ "loss": 0.3658,
3389
+ "step": 260
3390
+ },
3391
+ {
3392
+ "Batch Mean": -0.03800356388092041,
3393
+ "accuracy": 0.8671875,
3394
+ "epoch": 0.65,
3395
+ "step": 260
3396
+ },
3397
+ {
3398
+ "epoch": 0.6525,
3399
+ "grad_norm": 4.872611045837402,
3400
+ "learning_rate": 1.828947368421053e-06,
3401
+ "loss": 0.3535,
3402
+ "step": 261
3403
+ },
3404
+ {
3405
+ "Batch Mean": 0.17658138275146484,
3406
+ "accuracy": 0.84375,
3407
+ "epoch": 0.6525,
3408
+ "step": 261
3409
+ },
3410
+ {
3411
+ "epoch": 0.655,
3412
+ "grad_norm": 5.4620280265808105,
3413
+ "learning_rate": 1.8157894736842109e-06,
3414
+ "loss": 0.3634,
3415
+ "step": 262
3416
+ },
3417
+ {
3418
+ "Batch Mean": -0.46340298652648926,
3419
+ "accuracy": 0.84375,
3420
+ "epoch": 0.655,
3421
+ "step": 262
3422
+ },
3423
+ {
3424
+ "epoch": 0.6575,
3425
+ "grad_norm": 7.282100200653076,
3426
+ "learning_rate": 1.8026315789473685e-06,
3427
+ "loss": 0.4022,
3428
+ "step": 263
3429
+ },
3430
+ {
3431
+ "Batch Mean": -0.3810725212097168,
3432
+ "accuracy": 0.8359375,
3433
+ "epoch": 0.6575,
3434
+ "step": 263
3435
+ },
3436
+ {
3437
+ "epoch": 0.66,
3438
+ "grad_norm": 6.1263227462768555,
3439
+ "learning_rate": 1.7894736842105265e-06,
3440
+ "loss": 0.3521,
3441
+ "step": 264
3442
+ },
3443
+ {
3444
+ "Batch Mean": -0.06390047073364258,
3445
+ "accuracy": 0.8515625,
3446
+ "epoch": 0.66,
3447
+ "step": 264
3448
+ },
3449
+ {
3450
+ "epoch": 0.6625,
3451
+ "grad_norm": 5.438608646392822,
3452
+ "learning_rate": 1.7763157894736844e-06,
3453
+ "loss": 0.3473,
3454
+ "step": 265
3455
+ },
3456
+ {
3457
+ "Batch Mean": 0.591982364654541,
3458
+ "accuracy": 0.8125,
3459
+ "epoch": 0.6625,
3460
+ "step": 265
3461
+ },
3462
+ {
3463
+ "epoch": 0.665,
3464
+ "grad_norm": 8.58743667602539,
3465
+ "learning_rate": 1.7631578947368423e-06,
3466
+ "loss": 0.4313,
3467
+ "step": 266
3468
+ },
3469
+ {
3470
+ "Batch Mean": 0.41609740257263184,
3471
+ "accuracy": 0.8671875,
3472
+ "epoch": 0.665,
3473
+ "step": 266
3474
+ },
3475
+ {
3476
+ "epoch": 0.6675,
3477
+ "grad_norm": 6.497260570526123,
3478
+ "learning_rate": 1.75e-06,
3479
+ "loss": 0.289,
3480
+ "step": 267
3481
+ },
3482
+ {
3483
+ "Batch Mean": 0.10641050338745117,
3484
+ "accuracy": 0.8203125,
3485
+ "epoch": 0.6675,
3486
+ "step": 267
3487
+ },
3488
+ {
3489
+ "epoch": 0.67,
3490
+ "grad_norm": 6.662869930267334,
3491
+ "learning_rate": 1.736842105263158e-06,
3492
+ "loss": 0.3987,
3493
+ "step": 268
3494
+ },
3495
+ {
3496
+ "Batch Mean": 0.5242280960083008,
3497
+ "accuracy": 0.8125,
3498
+ "epoch": 0.67,
3499
+ "step": 268
3500
+ },
3501
+ {
3502
+ "epoch": 0.6725,
3503
+ "grad_norm": 7.127610206604004,
3504
+ "learning_rate": 1.723684210526316e-06,
3505
+ "loss": 0.3469,
3506
+ "step": 269
3507
+ },
3508
+ {
3509
+ "Batch Mean": 0.22644498944282532,
3510
+ "accuracy": 0.875,
3511
+ "epoch": 0.6725,
3512
+ "step": 269
3513
+ },
3514
+ {
3515
+ "epoch": 0.675,
3516
+ "grad_norm": 5.849222183227539,
3517
+ "learning_rate": 1.710526315789474e-06,
3518
+ "loss": 0.3443,
3519
+ "step": 270
3520
+ },
3521
+ {
3522
+ "Batch Mean": -0.5374040603637695,
3523
+ "accuracy": 0.875,
3524
+ "epoch": 0.675,
3525
+ "step": 270
3526
+ },
3527
+ {
3528
+ "epoch": 0.6775,
3529
+ "grad_norm": 7.3331990242004395,
3530
+ "learning_rate": 1.6973684210526318e-06,
3531
+ "loss": 0.3233,
3532
+ "step": 271
3533
+ },
3534
+ {
3535
+ "Batch Mean": -0.5392742156982422,
3536
+ "accuracy": 0.859375,
3537
+ "epoch": 0.6775,
3538
+ "step": 271
3539
+ },
3540
+ {
3541
+ "epoch": 0.68,
3542
+ "grad_norm": 8.307405471801758,
3543
+ "learning_rate": 1.6842105263157895e-06,
3544
+ "loss": 0.3344,
3545
+ "step": 272
3546
+ },
3547
+ {
3548
+ "Batch Mean": -0.2637630105018616,
3549
+ "accuracy": 0.8046875,
3550
+ "epoch": 0.68,
3551
+ "step": 272
3552
+ },
3553
+ {
3554
+ "epoch": 0.6825,
3555
+ "grad_norm": 6.486652374267578,
3556
+ "learning_rate": 1.6710526315789474e-06,
3557
+ "loss": 0.3553,
3558
+ "step": 273
3559
+ },
3560
+ {
3561
+ "Batch Mean": -0.19452619552612305,
3562
+ "accuracy": 0.8046875,
3563
+ "epoch": 0.6825,
3564
+ "step": 273
3565
+ },
3566
+ {
3567
+ "epoch": 0.685,
3568
+ "grad_norm": 5.73057222366333,
3569
+ "learning_rate": 1.6578947368421053e-06,
3570
+ "loss": 0.3737,
3571
+ "step": 274
3572
+ },
3573
+ {
3574
+ "Batch Mean": 0.2827339172363281,
3575
+ "accuracy": 0.828125,
3576
+ "epoch": 0.685,
3577
+ "step": 274
3578
+ },
3579
+ {
3580
+ "epoch": 0.6875,
3581
+ "grad_norm": 6.780818939208984,
3582
+ "learning_rate": 1.6447368421052635e-06,
3583
+ "loss": 0.3521,
3584
+ "step": 275
3585
+ },
3586
+ {
3587
+ "Batch Mean": 0.45183420181274414,
3588
+ "accuracy": 0.84375,
3589
+ "epoch": 0.6875,
3590
+ "step": 275
3591
+ },
3592
+ {
3593
+ "epoch": 0.69,
3594
+ "grad_norm": 8.210237503051758,
3595
+ "learning_rate": 1.6315789473684212e-06,
3596
+ "loss": 0.4362,
3597
+ "step": 276
3598
+ },
3599
+ {
3600
+ "Batch Mean": 0.2845495939254761,
3601
+ "accuracy": 0.765625,
3602
+ "epoch": 0.69,
3603
+ "step": 276
3604
+ },
3605
+ {
3606
+ "epoch": 0.6925,
3607
+ "grad_norm": 7.878791332244873,
3608
+ "learning_rate": 1.618421052631579e-06,
3609
+ "loss": 0.4695,
3610
+ "step": 277
3611
+ },
3612
+ {
3613
+ "Batch Mean": 0.24765238165855408,
3614
+ "accuracy": 0.8359375,
3615
+ "epoch": 0.6925,
3616
+ "step": 277
3617
+ },
3618
+ {
3619
+ "epoch": 0.695,
3620
+ "grad_norm": 6.432671070098877,
3621
+ "learning_rate": 1.605263157894737e-06,
3622
+ "loss": 0.3256,
3623
+ "step": 278
3624
+ },
3625
+ {
3626
+ "Batch Mean": -0.01769864559173584,
3627
+ "accuracy": 0.8046875,
3628
+ "epoch": 0.695,
3629
+ "step": 278
3630
+ },
3631
+ {
3632
+ "epoch": 0.6975,
3633
+ "grad_norm": 6.705868721008301,
3634
+ "learning_rate": 1.5921052631578949e-06,
3635
+ "loss": 0.3824,
3636
+ "step": 279
3637
+ },
3638
+ {
3639
+ "Batch Mean": -0.5642671585083008,
3640
+ "accuracy": 0.8203125,
3641
+ "epoch": 0.6975,
3642
+ "step": 279
3643
+ },
3644
+ {
3645
+ "epoch": 0.7,
3646
+ "grad_norm": 7.755029201507568,
3647
+ "learning_rate": 1.5789473684210526e-06,
3648
+ "loss": 0.349,
3649
+ "step": 280
3650
+ },
3651
+ {
3652
+ "Batch Mean": -0.49985718727111816,
3653
+ "accuracy": 0.8125,
3654
+ "epoch": 0.7,
3655
+ "step": 280
3656
+ },
3657
+ {
3658
+ "epoch": 0.7025,
3659
+ "grad_norm": 8.260653495788574,
3660
+ "learning_rate": 1.5657894736842105e-06,
3661
+ "loss": 0.438,
3662
+ "step": 281
3663
+ },
3664
+ {
3665
+ "Batch Mean": -0.30716943740844727,
3666
+ "accuracy": 0.8515625,
3667
+ "epoch": 0.7025,
3668
+ "step": 281
3669
+ },
3670
+ {
3671
+ "epoch": 0.705,
3672
+ "grad_norm": 6.337352752685547,
3673
+ "learning_rate": 1.5526315789473686e-06,
3674
+ "loss": 0.3346,
3675
+ "step": 282
3676
+ },
3677
+ {
3678
+ "Batch Mean": 0.08174550533294678,
3679
+ "accuracy": 0.828125,
3680
+ "epoch": 0.705,
3681
+ "step": 282
3682
+ },
3683
+ {
3684
+ "epoch": 0.7075,
3685
+ "grad_norm": 5.9810380935668945,
3686
+ "learning_rate": 1.5394736842105265e-06,
3687
+ "loss": 0.3852,
3688
+ "step": 283
3689
+ },
3690
+ {
3691
+ "Batch Mean": 0.15669594705104828,
3692
+ "accuracy": 0.8515625,
3693
+ "epoch": 0.7075,
3694
+ "step": 283
3695
+ },
3696
+ {
3697
+ "epoch": 0.71,
3698
+ "grad_norm": 5.605470657348633,
3699
+ "learning_rate": 1.5263157894736844e-06,
3700
+ "loss": 0.3186,
3701
+ "step": 284
3702
+ },
3703
+ {
3704
+ "Batch Mean": -0.0030188560485839844,
3705
+ "accuracy": 0.8515625,
3706
+ "epoch": 0.71,
3707
+ "step": 284
3708
+ },
3709
+ {
3710
+ "epoch": 0.7125,
3711
+ "grad_norm": 5.514898300170898,
3712
+ "learning_rate": 1.5131578947368421e-06,
3713
+ "loss": 0.3126,
3714
+ "step": 285
3715
+ },
3716
+ {
3717
+ "Batch Mean": 0.1930232048034668,
3718
+ "accuracy": 0.84375,
3719
+ "epoch": 0.7125,
3720
+ "step": 285
3721
+ },
3722
+ {
3723
+ "epoch": 0.715,
3724
+ "grad_norm": 6.415936470031738,
3725
+ "learning_rate": 1.5e-06,
3726
+ "loss": 0.3649,
3727
+ "step": 286
3728
+ },
3729
+ {
3730
+ "Batch Mean": 0.2962369918823242,
3731
+ "accuracy": 0.8671875,
3732
+ "epoch": 0.715,
3733
+ "step": 286
3734
+ },
3735
+ {
3736
+ "epoch": 0.7175,
3737
+ "grad_norm": 6.742696285247803,
3738
+ "learning_rate": 1.486842105263158e-06,
3739
+ "loss": 0.3298,
3740
+ "step": 287
3741
+ },
3742
+ {
3743
+ "Batch Mean": -0.0600665807723999,
3744
+ "accuracy": 0.78125,
3745
+ "epoch": 0.7175,
3746
+ "step": 287
3747
+ },
3748
+ {
3749
+ "epoch": 0.72,
3750
+ "grad_norm": 5.89642858505249,
3751
+ "learning_rate": 1.4736842105263159e-06,
3752
+ "loss": 0.4032,
3753
+ "step": 288
3754
+ },
3755
+ {
3756
+ "Batch Mean": -0.012648344039916992,
3757
+ "accuracy": 0.890625,
3758
+ "epoch": 0.72,
3759
+ "step": 288
3760
+ },
3761
+ {
3762
+ "epoch": 0.7225,
3763
+ "grad_norm": 4.926860809326172,
3764
+ "learning_rate": 1.460526315789474e-06,
3765
+ "loss": 0.2753,
3766
+ "step": 289
3767
+ },
3768
+ {
3769
+ "Batch Mean": -0.09966588020324707,
3770
+ "accuracy": 0.8359375,
3771
+ "epoch": 0.7225,
3772
+ "step": 289
3773
+ },
3774
+ {
3775
+ "epoch": 0.725,
3776
+ "grad_norm": 6.0810394287109375,
3777
+ "learning_rate": 1.4473684210526317e-06,
3778
+ "loss": 0.3398,
3779
+ "step": 290
3780
+ },
3781
+ {
3782
+ "Batch Mean": 0.2990548014640808,
3783
+ "accuracy": 0.8125,
3784
+ "epoch": 0.725,
3785
+ "step": 290
3786
+ },
3787
+ {
3788
+ "epoch": 0.7275,
3789
+ "grad_norm": 6.704870223999023,
3790
+ "learning_rate": 1.4342105263157896e-06,
3791
+ "loss": 0.3789,
3792
+ "step": 291
3793
+ },
3794
+ {
3795
+ "Batch Mean": -0.30427980422973633,
3796
+ "accuracy": 0.78125,
3797
+ "epoch": 0.7275,
3798
+ "step": 291
3799
+ },
3800
+ {
3801
+ "epoch": 0.73,
3802
+ "grad_norm": 7.633101940155029,
3803
+ "learning_rate": 1.4210526315789475e-06,
3804
+ "loss": 0.4531,
3805
+ "step": 292
3806
+ },
3807
+ {
3808
+ "Batch Mean": -0.5276459455490112,
3809
+ "accuracy": 0.765625,
3810
+ "epoch": 0.73,
3811
+ "step": 292
3812
+ },
3813
+ {
3814
+ "epoch": 0.7325,
3815
+ "grad_norm": 7.3620829582214355,
3816
+ "learning_rate": 1.4078947368421054e-06,
3817
+ "loss": 0.4443,
3818
+ "step": 293
3819
+ },
3820
+ {
3821
+ "Batch Mean": 0.03517109155654907,
3822
+ "accuracy": 0.8515625,
3823
+ "epoch": 0.7325,
3824
+ "step": 293
3825
+ },
3826
+ {
3827
+ "epoch": 0.735,
3828
+ "grad_norm": 5.785881996154785,
3829
+ "learning_rate": 1.394736842105263e-06,
3830
+ "loss": 0.314,
3831
+ "step": 294
3832
+ },
3833
+ {
3834
+ "Batch Mean": 0.1681404411792755,
3835
+ "accuracy": 0.8125,
3836
+ "epoch": 0.735,
3837
+ "step": 294
3838
+ },
3839
+ {
3840
+ "epoch": 0.7375,
3841
+ "grad_norm": 6.820896148681641,
3842
+ "learning_rate": 1.3815789473684212e-06,
3843
+ "loss": 0.3912,
3844
+ "step": 295
3845
+ },
3846
+ {
3847
+ "Batch Mean": -0.14338159561157227,
3848
+ "accuracy": 0.84375,
3849
+ "epoch": 0.7375,
3850
+ "step": 295
3851
+ },
3852
+ {
3853
+ "epoch": 0.74,
3854
+ "grad_norm": 5.598686695098877,
3855
+ "learning_rate": 1.3684210526315791e-06,
3856
+ "loss": 0.3388,
3857
+ "step": 296
3858
+ },
3859
+ {
3860
+ "Batch Mean": 0.2691183090209961,
3861
+ "accuracy": 0.8515625,
3862
+ "epoch": 0.74,
3863
+ "step": 296
3864
+ },
3865
+ {
3866
+ "epoch": 0.7425,
3867
+ "grad_norm": 6.6116204261779785,
3868
+ "learning_rate": 1.355263157894737e-06,
3869
+ "loss": 0.3936,
3870
+ "step": 297
3871
+ },
3872
+ {
3873
+ "Batch Mean": 0.0850672721862793,
3874
+ "accuracy": 0.8515625,
3875
+ "epoch": 0.7425,
3876
+ "step": 297
3877
+ },
3878
+ {
3879
+ "epoch": 0.745,
3880
+ "grad_norm": 5.332149028778076,
3881
+ "learning_rate": 1.342105263157895e-06,
3882
+ "loss": 0.3688,
3883
+ "step": 298
3884
+ },
3885
+ {
3886
+ "Batch Mean": 0.010596275329589844,
3887
+ "accuracy": 0.8125,
3888
+ "epoch": 0.745,
3889
+ "step": 298
3890
+ },
3891
+ {
3892
+ "epoch": 0.7475,
3893
+ "grad_norm": 5.3448333740234375,
3894
+ "learning_rate": 1.3289473684210526e-06,
3895
+ "loss": 0.3777,
3896
+ "step": 299
3897
+ },
3898
+ {
3899
+ "Batch Mean": 0.0567474365234375,
3900
+ "accuracy": 0.875,
3901
+ "epoch": 0.7475,
3902
+ "step": 299
3903
+ },
3904
+ {
3905
+ "epoch": 0.75,
3906
+ "grad_norm": 5.18348503112793,
3907
+ "learning_rate": 1.3157894736842106e-06,
3908
+ "loss": 0.3376,
3909
+ "step": 300
3910
+ }
3911
+ ],
3912
+ "logging_steps": 1,
3913
+ "max_steps": 400,
3914
+ "num_input_tokens_seen": 0,
3915
+ "num_train_epochs": 1,
3916
+ "save_steps": 100,
3917
+ "stateful_callbacks": {
3918
+ "TrainerControl": {
3919
+ "args": {
3920
+ "should_epoch_stop": false,
3921
+ "should_evaluate": false,
3922
+ "should_log": false,
3923
+ "should_save": true,
3924
+ "should_training_stop": false
3925
+ },
3926
+ "attributes": {}
3927
+ }
3928
+ },
3929
+ "total_flos": 0.0,
3930
+ "train_batch_size": 16,
3931
+ "trial_name": null,
3932
+ "trial_params": null
3933
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108253c2924ab960b742973fd9045c7f43b2d39e8229930aed15fd573ed1620a
3
+ size 5752
checkpoint-300/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-400/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tlrm/Q25-1.5B-UC",
3
+ "architectures": [
4
+ "Qwen2ForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 8960,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "max_position_embeddings": 131072,
20
+ "max_window_layers": 28,
21
+ "model_type": "qwen2",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 28,
24
+ "num_key_value_heads": 2,
25
+ "pad_token_id": 151643,
26
+ "rms_norm_eps": 1e-06,
27
+ "rope_scaling": null,
28
+ "rope_theta": 1000000.0,
29
+ "sliding_window": null,
30
+ "tie_word_embeddings": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.48.0",
33
+ "use_cache": false,
34
+ "use_mrope": false,
35
+ "use_sliding_window": false,
36
+ "vocab_size": 151936
37
+ }
checkpoint-400/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9df475f3431902ed315bba7425b846700d3a36b0782a353354c2dd91b45996b6
3
+ size 4996670464
checkpoint-400/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb419031e6830f6d662c69fe4dd6de7ea9ed9df71b376bf20355cea70c9aabb
3
+ size 1178231192
checkpoint-400/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6174863360
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.norm.weight": "model-00002-of-00002.safetensors",
344
+ "score.weight": "model-00002-of-00002.safetensors"
345
+ }
346
+ }
checkpoint-400/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-400/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-400/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-400/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:108253c2924ab960b742973fd9045c7f43b2d39e8229930aed15fd573ed1620a
3
+ size 5752