File size: 13,617 Bytes
e6544a3 032b71d e6544a3 032b71d 7f255da e6544a3 adbe0d1 e6544a3 8dd27f8 38521ba 5fd224a 032b71d 013f209 e6544a3 032b71d e6544a3 38521ba 64e6528 7f255da 97df0ce 7f255da c26f322 7f255da 38521ba 032b71d 38521ba 8dd27f8 adbe0d1 8dd27f8 032b71d 38521ba 032b71d 38521ba 032b71d 496a461 38521ba 032b71d 38521ba 032b71d 38521ba 032b71d 38521ba 3b27112 38521ba e6544a3 032b71d 64e6528 c3a8672 734bbd3 d477ee0 496a461 3b27112 bb03b0c 032b71d 3b27112 032b71d 3b27112 032b71d 0b8c57d adbe0d1 0b8c57d 032b71d bb03b0c 032b71d 64e6528 032b71d 64e6528 0968d03 032b71d c26f322 032b71d 016f972 032b71d 7f255da 032b71d 38521ba 0968d03 0b8c57d adbe0d1 8dd27f8 adbe0d1 c26f322 032b71d 38521ba 032b71d 0b8c57d 79ae586 38521ba 0968d03 032b71d 0b8c57d 032b71d 0968d03 032b71d 0968d03 032b71d 38521ba 032b71d 0968d03 032b71d 38521ba 032b71d 38521ba 032b71d 852fbd3 97df0ce 38521ba adbe0d1 38521ba 032b71d 38521ba 032b71d 852fbd3 032b71d 852fbd3 032b71d 3b27112 852fbd3 38521ba 032b71d 38521ba f73bdec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import cv2
import torch
import numpy as np
import PIL
from PIL import Image
from typing import Tuple, List, Optional
from pydantic import BaseModel
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
import torch.nn.functional as F
from torchvision.transforms import Compose
import os
from huggingface_hub import hf_hub_download
import base64
import io
import json
from transformers import CLIPProcessor, CLIPModel
# global variable
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
# Download LCM-LoRA model if not already downloaded
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
if not os.path.exists(lcm_lora_path):
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
class GenerateImageRequest(BaseModel):
inputs: str
negative_prompt: str
style: str
num_steps: int
identitynet_strength_ratio: float
adapter_strength_ratio: float
pose_strength: float
canny_strength: float
depth_strength: float
controlnet_selection: List[str]
guidance_scale: float
seed: int
enable_LCM: bool
enhance_face_region: bool
face_image_base64: str
pose_image_base64: Optional[str] = None
class EndpointHandler:
def __init__(self, model_dir):
# Ensure the necessary files are downloaded
controlnet_config = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir=os.path.join(model_dir, "checkpoints"))
controlnet_model = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir=os.path.join(model_dir, "checkpoints"))
face_adapter = hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir=os.path.join(model_dir, "checkpoints"))
dir_path = os.path.join(model_dir, "models", "face_detection_yunet_2023mar_int8.onnx")
if not os.path.exists(dir_path):
raise RuntimeError(f"Model path {dir_path} does not exist.")
else:
self.face_net = cv2.dnn.readNet(dir_path)
self.app = FaceAnalysis(name='model', root=model_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id=0, det_size=(640, 640))
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# Path to InstantID models
controlnet_path = os.path.join(model_dir, "checkpoints", "ControlNetModel")
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
# controlnet-pose
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights(lcm_lora_path)
self.pipe.fuse_lora()
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# Load CLIP model for safety checking
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
def is_nsfw(self, image: Image.Image) -> bool:
"""
Check if an image contains NSFW content using CLIP model.
Args:
image (Image.Image): PIL image to check.
Returns:
bool: True if the image is NSFW, False otherwise.
"""
inputs = self.clip_processor(text=["NSFW", "SFW"], images=image, return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = self.clip_model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we take the softmax to get the probabilities
nsfw_prob = probs[0, 0].item() # probability of "NSFW" label
return nsfw_prob > 0.8 # Adjusted threshold for NSFW detection
def detect_faces(self, image: np.ndarray):
"""
Detect faces using Yunet model.
"""
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(320, 320), mean=(104.0, 177.0, 123.0))
self.face_net.setInput(blob)
detections = self.face_net.forward()
h, w = image.shape[:2]
faces = []
for i in range(detections.shape[2]): # Ensure we access the third dimension correctly
confidence = detections[0, 0, i, 2]
if confidence > 0.5: # confidence threshold
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(x, y, x1, y1) = box.astype("int")
face = image[y:y1, x:x1]
faces.append((x, y, x1, y1, face))
return faces
def __call__(self, data):
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(
style_name: str, positive: str, negative: str = ""
) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
request = GenerateImageRequest(**data)
inputs = request.inputs
negative_prompt = request.negative_prompt
style_name = request.style
identitynet_strength_ratio = request.identitynet_strength_ratio
adapter_strength_ratio = request.adapter_strength_ratio
pose_strength = request.pose_strength
canny_strength = request.canny_strength
num_steps = request.num_steps
guidance_scale = request.guidance_scale
controlnet_selection = request.controlnet_selection
seed = request.seed
enhance_face_region = request.enhance_face_region
enable_LCM = request.enable_LCM
if enable_LCM:
self.pipe.enable_lora()
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
guidance_scale = min(max(guidance_scale, 0), 1)
else:
self.pipe.disable_lora()
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
# apply the style template
inputs, negative_prompt = apply_style(style_name, inputs, negative_prompt)
# Decode base64 image
face_image_base64 = data.get("face_image_base64")
face_image_data = base64.b64decode(face_image_base64)
face_image = Image.open(io.BytesIO(face_image_data))
pose_image_base64 = data.get("pose_image_base64")
pose_image = None
if pose_image_base64:
pose_image_data = base64.b64decode(pose_image_base64)
pose_image = Image.open(io.BytesIO(pose_image_data))
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Detect faces using Yunet model
faces = self.detect_faces(face_image_cv2)
if not faces:
return {"error": "No faces detected."}
x, y, x1, y1, face_region = faces[0] # Only using the first detected face for simplicity
face_kps = draw_kps(face_image, np.array([[x, y], [x1, y1]])) # Placeholder keypoints
# Analyze the face using InsightFace
face_info = self.app.get(face_image_cv2)
if not face_info:
return {"error": "Face analysis failed."}
face_info = face_info[0] # Assume we are interested in the first face detected
face_emb = face_info["embedding"]
img_controlnet = face_image
if pose_image:
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
faces = self.detect_faces(pose_image_cv2)
if faces:
x, y, x1, y1, _ = faces[0]
face_kps = draw_kps(pose_image, np.array([[x, y], [x1, y1]]))
width, height = face_kps.size
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = x, y, x1, y1
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {inputs}, \n[Debug] Neg Prompt: {negative_prompt}")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
outputs = self.pipe(
prompt=inputs,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
enhance_face_region=enhance_face_region
)
images = outputs.images
# Check for NSFW content
if self.is_nsfw(images[0]):
return {"error": "Generated image contains NSFW content and was discarded."}
# Convert the output image to base64
buffered = io.BytesIO()
images[0].save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"generated_image_base64": img_str}
|