ocmhelp / handler.py
Jacobmadwed's picture
Update handler.py
087f163 verified
raw
history blame
12.1 kB
import cv2
import torch
import numpy as np
from PIL import Image
from typing import Tuple, List, Optional, Dict, Any
from pydantic import BaseModel
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
import torch.nn.functional as F
from torchvision.transforms import Compose
import os
from huggingface_hub import hf_hub_download
import base64
import io
from transformers import CLIPProcessor, CLIPModel
import onnxruntime as ort
# Global variables
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
# Download LCM-LoRA model if not already downloaded
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
if not os.path.exists(lcm_lora_path):
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
class GenerateImageRequest(BaseModel):
inputs: str
negative_prompt: str
style: str
num_steps: int
identitynet_strength_ratio: float
adapter_strength_ratio: float
pose_strength: float
canny_strength: float
depth_strength: float
controlnet_selection: List[str]
guidance_scale: float
seed: int
enable_LCM: bool
enhance_face_region: bool
face_image_base64: str
pose_image_base64: Optional[str] = None
class EndpointHandler:
def __init__(self, model_dir=""):
# Ensure the necessary files are downloaded
controlnet_config = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir=os.path.join(model_dir, "checkpoints"))
controlnet_model = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir=os.path.join(model_dir, "checkpoints"))
face_adapter = hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir=os.path.join(model_dir, "checkpoints"))
# Load the ONNX model
onnx_model_path = os.path.join(model_dir, "models", "version-RFB-320.onnx")
if not os.path.exists(onnx_model_path):
print(f"Model path {onnx_model_path} does not exist. Please ensure the model is available.")
self.ort_session = ort.InferenceSession(onnx_model_path)
self.openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# Path to InstantID models
controlnet_path = os.path.join(model_dir, "checkpoints", "ControlNetModel")
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
# Load custom ControlNet models
self.controlnet_pose = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=dtype).to(device)
self.controlnet_canny = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=dtype).to(device)
# ControlNet map
self.controlnet_map = {
"pose": self.controlnet_pose,
"canny": self.controlnet_canny
}
self.controlnet_map_fn = {
"pose": self.openpose,
"canny": self.get_canny_image
}
pretrained_model_name_or_path = "stablediffusionapi/protovision-xl-high-fidel"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# Load and disable LCM
self.pipe.load_lora_weights(lcm_lora_path)
self.pipe.fuse_lora()
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# Load CLIP model for safety checking
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
def get_canny_image(self, image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
def is_nsfw(self, image: Image.Image) -> bool:
inputs = self.clip_processor(text=["NSFW", "SFW"], images=image, return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = self.clip_model(**inputs)
logits_per_image = outputs.logits_per_image # image-text similarity score
probs = logits_per_image.softmax(dim=1) # probabilities
nsfw_prob = probs[0, 0].item() # probability of "NSFW" label
return nsfw_prob > 0.9 # threshold for NSFW detection
def preprocess(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (320, 240))
image_mean = np.array([127, 127, 127])
image = (image - image_mean) / 128
image = np.transpose(image, [2, 0, 1])
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
return image
def get_face_info(self, image):
preprocessed_image = self.preprocess(image)
input_name = self.ort_session.get_inputs()[0].name
confidences, boxes = self.ort_session.run(None, {input_name: preprocessed_image})
print(f"Confidences shape: {confidences.shape}, Boxes shape: {boxes.shape}")
face_info_list = []
for i in range(len(boxes)):
box = boxes[i]
conf = confidences[i]
if conf[0] > 0.7: # Fixing the out-of-bounds issue
x1, y1, x2, y2 = box[0] * 320, box[1] * 240, box[2] * 320, box[3] * 240
face_info_list.append({"bbox": [x1, y1, x2, y2]})
return face_info_list
def __call__(self, data: Any) -> Dict[str, Any]:
request = GenerateImageRequest(**data)
if request.enable_LCM:
self.pipe.enable_lora()
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
guidance_scale = min(max(request.guidance_scale, 0), 1)
else:
self.pipe.disable_lora()
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
# Apply style
inputs, negative_prompt = self.apply_style(request.style, request.inputs, request.negative_prompt)
# Decode base64 images
face_image = self.decode_base64_image(request.face_image_base64)
pose_image = self.decode_base64_image(request.pose_image_base64) if request.pose_image_base64 else None
face_image = self.resize_img(face_image, max_side=1024)
face_image_cv2 = self.convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info_list = self.get_face_info(face_image_cv2)
if len(face_info_list) == 0:
return {"error": "No faces detected."}
face_info = max(face_info_list, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))
face_kps = draw_kps(self.convert_from_cv2_to_image(face_image_cv2), face_info["bbox"])
img_controlnet = face_image
if pose_image:
pose_image = self.resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = self.convert_from_image_to_cv2(pose_image)
face_info_list = self.get_face_info(pose_image_cv2)
if len(face_info_list) == 0:
return {"error": "No faces detected in pose image."}
face_info = max(face_info_list, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))
face_kps = draw_kps(pose_image, face_info["bbox"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3], dtype=np.uint8)
x1, y1, x2, y2 = map(int, face_info["bbox"])
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask)
controlnet_scales = {"pose": request.pose_strength, "canny": request.canny_strength}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet] + [self.controlnet_map[s] for s in request.controlnet_selection]
)
control_scales = [float(request.identitynet_strength_ratio)] + [controlnet_scales[s] for s in request.controlnet_selection]
control_images = [face_kps] + [self.controlnet_map_fn[s](img_controlnet).resize((width, height)) for s in request.controlnet_selection]
generator = torch.Generator(device=device).manual_seed(request.seed)
outputs = self.pipe(
prompt=inputs,
negative_prompt=negative_prompt,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=request.num_steps,
guidance_scale=request.guidance_scale,
height=height,
width=width,
generator=generator,
enhance_face_region=request.enhance_face_region,
)
images = outputs.images
if self.is_nsfw(images[0]):
return {"error": "Generated image contains NSFW content and was discarded."}
# Convert the image to base64
buffered = io.BytesIO()
images[0].save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"generated_image_base64": img_str}
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = io.BytesIO(base64_image)
return Image.open(buffer)
def convert_from_cv2_to_image(self, img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(self, img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(self, input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y: offset_y + h_resize_new, offset_x: offset_x + w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(self, style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative