ocmhelp / handler.py
Jacobmadwed's picture
Update handler.py
79ae586 verified
raw
history blame
14.1 kB
import cv2
import torch
import numpy as np
import PIL
from PIL import Image
from typing import Tuple, List, Optional
from pydantic import BaseModel
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps
from controlnet_aux import OpenposeDetector
import torch.nn.functional as F
from torchvision.transforms import Compose
import os
from huggingface_hub import hf_hub_download
import base64
import io
import json
from transformers import CLIPProcessor, CLIPModel
import onnxruntime as ort
# global variable
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Spring Festival"
# Download LCM-LoRA model if not already downloaded
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
if not os.path.exists(lcm_lora_path):
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
class GenerateImageRequest(BaseModel):
inputs: str
negative_prompt: str
style: str
num_steps: int
identitynet_strength_ratio: float
adapter_strength_ratio: float
pose_strength: float
canny_strength: float
depth_strength: float
controlnet_selection: List[str]
guidance_scale: float
seed: int
enable_LCM: bool
enhance_face_region: bool
face_image_base64: str
pose_image_base64: Optional[str] = None
class EndpointHandler:
def __init__(self, model_dir):
# Ensure the necessary files are downloaded
controlnet_config = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir=os.path.join(model_dir, "checkpoints"))
controlnet_model = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir=os.path.join(model_dir, "checkpoints"))
face_adapter = hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir=os.path.join(model_dir, "checkpoints"))
# Load the ONNX model
onnx_model_path = os.path.join(model_dir, "models", "version-RFB-320.onnx")
if not os.path.exists(onnx_model_path):
print(f"Model path {onnx_model_path} does not exist. Please ensure the model is available.")
self.ort_session = ort.InferenceSession(onnx_model_path)
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# Path to InstantID models
controlnet_path = os.path.join(model_dir, "checkpoints", "ControlNetModel")
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=dtype
)
# controlnet-pose
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=dtype
).to(device)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model, torch_dtype=dtype
).to(device)
def get_canny_image(image, t1=100, t2=200):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
edges = cv2.Canny(image, t1, t2)
return Image.fromarray(edges, "L")
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image
}
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=[self.controlnet_identitynet],
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
# load and disable LCM
self.pipe.load_lora_weights(lcm_lora_path)
self.pipe.fuse_lora()
self.pipe.disable_lora()
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
self.pipe.image_proj_model.to("cuda")
self.pipe.unet.to("cuda")
# Load CLIP model for safety checking
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
def is_nsfw(self, image: Image.Image) -> bool:
"""
Check if an image contains NSFW content using CLIP model.
Args:
image (Image.Image): PIL image to check.
Returns:
bool: True if the image is NSFW, False otherwise.
"""
inputs = self.clip_processor(text=["NSFW", "SFW"], images=image, return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = self.clip_model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we take the softmax to get the probabilities
nsfw_prob = probs[0, 0].item() # probability of "NSFW" label
return nsfw_prob > 0.8 # Adjusted threshold for NSFW detection
def preprocess(self, image):
# Preprocess the image for ONNX model
image = cv2.resize(image, (320, 240)) # Adjust based on model input size
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.transpose(image, (2, 0, 1))
image = image[np.newaxis, :, :, :].astype(np.float32) / 127.5 - 1.0 # Normalize to [-1, 1]
return image
def get_face_info(self, image):
# Preprocess the image
image = self.preprocess(image)
# Run the ONNX model to get the face detection results
input_name = self.ort_session.get_inputs()[0].name
outputs = self.ort_session.run(None, {input_name: image})
# Process the output to extract face information
bboxes = outputs[0][0] # Adjust based on model output structure
face_info_list = []
for bbox in bboxes:
score = bbox[2]
if score > 0.5: # Confidence threshold
x1, y1, x2, y2 = bbox[3:7] * [320, 240, 320, 240] # Scale coordinates
face_info_list.append({
"bbox": [x1, y1, x2, y2],
"embedding": self.get_face_embedding(image[:, :, int(y1):int(y2), int(x1):int(x2)])
})
return face_info_list
def __call__(self, data):
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(
style_name: str, positive: str, negative: str = ""
) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
request = GenerateImageRequest(**data)
inputs = request.inputs
negative_prompt = request.negative_prompt
style_name = request.style
identitynet_strength_ratio = request.identitynet_strength_ratio
adapter_strength_ratio = request.adapter_strength_ratio
pose_strength = request.pose_strength
canny_strength = request.canny_strength
num_steps = request.num_steps
guidance_scale = request.guidance_scale
controlnet_selection = request.controlnet_selection
seed = request.seed
enhance_face_region = request.enhance_face_region
enable_LCM = request.enable_LCM
if enable_LCM:
self.pipe.enable_lora()
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
guidance_scale = min(max(guidance_scale, 0), 1)
else:
self.pipe.disable_lora()
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
# apply the style template
inputs, negative_prompt = apply_style(style_name, inputs, negative_prompt)
# Decode base64 image
face_image_base64 = data.get("face_image_base64")
face_image_data = base64.b64decode(face_image_base64)
face_image = Image.open(io.BytesIO(face_image_data))
pose_image_base64 = data.get("pose_image_base64")
pose_image = None
if pose_image_base64:
pose_image_data = base64.b64decode(pose_image_base64)
pose_image = Image.open(io.BytesIO(pose_image_data))
face_image = resize_img(face_image, max_side=1024)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features using the ONNX model
face_info_list = self.get_face_info(face_image_cv2)
if len(face_info_list) == 0:
return {"error": "No faces detected."}
# Use the largest face detected
face_info = max(face_info_list, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image:
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
# Extract face features from pose image using the ONNX model
face_info_list = self.get_face_info(pose_image_cv2)
if len(face_info_list) == 0:
return {"error": "No faces detected in pose image."}
face_info = max(face_info_list, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))
face_emb = face_info["embedding"]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
control_mask = np.zeros([height, width, 3], dtype=np.uint8) # Ensure dtype is uint8
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask)
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {inputs}, \n[Debug] Neg Prompt: {negative_prompt}")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
outputs = self.pipe(
prompt=inputs,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
enhance_face_region=enhance_face_region
)
images = outputs.images
# Check for NSFW content
if self.is_nsfw(images[0]):
return {"error": "Generated image contains NSFW content and was discarded."}
# Convert the output image to base64
buffered = io.BytesIO()
images[0].save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"generated_image_base64": img_str}