|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from functools import partial |
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.parallel import DistributedDataParallel |
|
from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer |
|
|
|
from dinov2.data import SamplerType, make_data_loader, make_dataset |
|
from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform |
|
import dinov2.distributed as distributed |
|
from dinov2.eval.metrics import MetricType, build_metric |
|
from dinov2.eval.setup import get_args_parser as get_setup_args_parser |
|
from dinov2.eval.setup import setup_and_build_model |
|
from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate |
|
from dinov2.logging import MetricLogger |
|
|
|
|
|
logger = logging.getLogger("dinov2") |
|
|
|
|
|
def get_args_parser( |
|
description: Optional[str] = None, |
|
parents: Optional[List[argparse.ArgumentParser]] = None, |
|
add_help: bool = True, |
|
): |
|
parents = parents or [] |
|
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False) |
|
parents = [setup_args_parser] |
|
parser = argparse.ArgumentParser( |
|
description=description, |
|
parents=parents, |
|
add_help=add_help, |
|
) |
|
parser.add_argument( |
|
"--train-dataset", |
|
dest="train_dataset_str", |
|
type=str, |
|
help="Training dataset", |
|
) |
|
parser.add_argument( |
|
"--val-dataset", |
|
dest="val_dataset_str", |
|
type=str, |
|
help="Validation dataset", |
|
) |
|
parser.add_argument( |
|
"--test-datasets", |
|
dest="test_dataset_strs", |
|
type=str, |
|
nargs="+", |
|
help="Test datasets, none to reuse the validation dataset", |
|
) |
|
parser.add_argument( |
|
"--epochs", |
|
type=int, |
|
help="Number of training epochs", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
help="Batch Size (per GPU)", |
|
) |
|
parser.add_argument( |
|
"--num-workers", |
|
type=int, |
|
help="Number de Workers", |
|
) |
|
parser.add_argument( |
|
"--epoch-length", |
|
type=int, |
|
help="Length of an epoch in number of iterations", |
|
) |
|
parser.add_argument( |
|
"--save-checkpoint-frequency", |
|
type=int, |
|
help="Number of epochs between two named checkpoint saves.", |
|
) |
|
parser.add_argument( |
|
"--eval-period-iterations", |
|
type=int, |
|
help="Number of iterations between two evaluations.", |
|
) |
|
parser.add_argument( |
|
"--learning-rates", |
|
nargs="+", |
|
type=float, |
|
help="Learning rates to grid search.", |
|
) |
|
parser.add_argument( |
|
"--no-resume", |
|
action="store_true", |
|
help="Whether to not resume from existing checkpoints", |
|
) |
|
parser.add_argument( |
|
"--val-metric-type", |
|
type=MetricType, |
|
choices=list(MetricType), |
|
help="Validation metric", |
|
) |
|
parser.add_argument( |
|
"--test-metric-types", |
|
type=MetricType, |
|
choices=list(MetricType), |
|
nargs="+", |
|
help="Evaluation metric", |
|
) |
|
parser.add_argument( |
|
"--classifier-fpath", |
|
type=str, |
|
help="Path to a file containing pretrained linear classifiers", |
|
) |
|
parser.add_argument( |
|
"--val-class-mapping-fpath", |
|
type=str, |
|
help="Path to a file containing a mapping to adjust classifier outputs", |
|
) |
|
parser.add_argument( |
|
"--test-class-mapping-fpaths", |
|
nargs="+", |
|
type=str, |
|
help="Path to a file containing a mapping to adjust classifier outputs", |
|
) |
|
parser.set_defaults( |
|
train_dataset_str="ImageNet:split=TRAIN", |
|
val_dataset_str="ImageNet:split=VAL", |
|
test_dataset_strs=None, |
|
epochs=10, |
|
batch_size=128, |
|
num_workers=8, |
|
epoch_length=1250, |
|
save_checkpoint_frequency=20, |
|
eval_period_iterations=1250, |
|
learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1], |
|
val_metric_type=MetricType.MEAN_ACCURACY, |
|
test_metric_types=None, |
|
classifier_fpath=None, |
|
val_class_mapping_fpath=None, |
|
test_class_mapping_fpaths=[None], |
|
) |
|
return parser |
|
|
|
|
|
def has_ddp_wrapper(m: nn.Module) -> bool: |
|
return isinstance(m, DistributedDataParallel) |
|
|
|
|
|
def remove_ddp_wrapper(m: nn.Module) -> nn.Module: |
|
return m.module if has_ddp_wrapper(m) else m |
|
|
|
|
|
def _pad_and_collate(batch): |
|
maxlen = max(len(targets) for image, targets in batch) |
|
padded_batch = [ |
|
(image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch |
|
] |
|
return torch.utils.data.default_collate(padded_batch) |
|
|
|
|
|
def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool): |
|
intermediate_output = x_tokens_list[-use_n_blocks:] |
|
output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1) |
|
if use_avgpool: |
|
output = torch.cat( |
|
( |
|
output, |
|
torch.mean(intermediate_output[-1][0], dim=1), |
|
), |
|
dim=-1, |
|
) |
|
output = output.reshape(output.shape[0], -1) |
|
return output.float() |
|
|
|
|
|
class LinearClassifier(nn.Module): |
|
"""Linear layer to train on top of frozen features""" |
|
|
|
def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000): |
|
super().__init__() |
|
self.out_dim = out_dim |
|
self.use_n_blocks = use_n_blocks |
|
self.use_avgpool = use_avgpool |
|
self.num_classes = num_classes |
|
self.linear = nn.Linear(out_dim, num_classes) |
|
self.linear.weight.data.normal_(mean=0.0, std=0.01) |
|
self.linear.bias.data.zero_() |
|
|
|
def forward(self, x_tokens_list): |
|
output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool) |
|
return self.linear(output) |
|
|
|
|
|
class AllClassifiers(nn.Module): |
|
def __init__(self, classifiers_dict): |
|
super().__init__() |
|
self.classifiers_dict = nn.ModuleDict() |
|
self.classifiers_dict.update(classifiers_dict) |
|
|
|
def forward(self, inputs): |
|
return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()} |
|
|
|
def __len__(self): |
|
return len(self.classifiers_dict) |
|
|
|
|
|
class LinearPostprocessor(nn.Module): |
|
def __init__(self, linear_classifier, class_mapping=None): |
|
super().__init__() |
|
self.linear_classifier = linear_classifier |
|
self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping)) |
|
|
|
def forward(self, samples, targets): |
|
preds = self.linear_classifier(samples) |
|
return { |
|
"preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds, |
|
"target": targets, |
|
} |
|
|
|
|
|
def scale_lr(learning_rates, batch_size): |
|
return learning_rates * (batch_size * distributed.get_global_size()) / 256.0 |
|
|
|
|
|
def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000): |
|
linear_classifiers_dict = nn.ModuleDict() |
|
optim_param_groups = [] |
|
for n in n_last_blocks_list: |
|
for avgpool in [False, True]: |
|
for _lr in learning_rates: |
|
lr = scale_lr(_lr, batch_size) |
|
out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1] |
|
linear_classifier = LinearClassifier( |
|
out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes |
|
) |
|
linear_classifier = linear_classifier.cuda() |
|
linear_classifiers_dict[ |
|
f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_") |
|
] = linear_classifier |
|
optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr}) |
|
|
|
linear_classifiers = AllClassifiers(linear_classifiers_dict) |
|
if distributed.is_enabled(): |
|
linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers) |
|
|
|
return linear_classifiers, optim_param_groups |
|
|
|
|
|
@torch.no_grad() |
|
def evaluate_linear_classifiers( |
|
feature_model, |
|
linear_classifiers, |
|
data_loader, |
|
metric_type, |
|
metrics_file_path, |
|
training_num_classes, |
|
iteration, |
|
prefixstring="", |
|
class_mapping=None, |
|
best_classifier_on_val=None, |
|
): |
|
logger.info("running validation !") |
|
|
|
num_classes = len(class_mapping) if class_mapping is not None else training_num_classes |
|
metric = build_metric(metric_type, num_classes=num_classes) |
|
postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()} |
|
metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict} |
|
|
|
_, results_dict_temp = evaluate( |
|
feature_model, |
|
data_loader, |
|
postprocessors, |
|
metrics, |
|
torch.cuda.current_device(), |
|
) |
|
|
|
logger.info("") |
|
results_dict = {} |
|
max_accuracy = 0 |
|
best_classifier = "" |
|
for i, (classifier_string, metric) in enumerate(results_dict_temp.items()): |
|
logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}") |
|
if ( |
|
best_classifier_on_val is None and metric["top-1"].item() > max_accuracy |
|
) or classifier_string == best_classifier_on_val: |
|
max_accuracy = metric["top-1"].item() |
|
best_classifier = classifier_string |
|
|
|
results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy} |
|
|
|
logger.info(f"best classifier: {results_dict['best_classifier']}") |
|
|
|
if distributed.is_main_process(): |
|
with open(metrics_file_path, "a") as f: |
|
f.write(f"iter: {iteration}\n") |
|
for k, v in results_dict.items(): |
|
f.write(json.dumps({k: v}) + "\n") |
|
f.write("\n") |
|
|
|
return results_dict |
|
|
|
|
|
def eval_linear( |
|
*, |
|
feature_model, |
|
linear_classifiers, |
|
train_data_loader, |
|
val_data_loader, |
|
metrics_file_path, |
|
optimizer, |
|
scheduler, |
|
output_dir, |
|
max_iter, |
|
checkpoint_period, |
|
running_checkpoint_period, |
|
eval_period, |
|
metric_type, |
|
training_num_classes, |
|
resume=True, |
|
classifier_fpath=None, |
|
val_class_mapping=None, |
|
): |
|
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) |
|
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 |
|
|
|
periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter) |
|
iteration = start_iter |
|
logger.info("Starting training from iteration {}".format(start_iter)) |
|
metric_logger = MetricLogger(delimiter=" ") |
|
header = "Training" |
|
|
|
for data, labels in metric_logger.log_every( |
|
train_data_loader, |
|
10, |
|
header, |
|
max_iter, |
|
start_iter, |
|
): |
|
data = data.cuda(non_blocking=True) |
|
labels = labels.cuda(non_blocking=True) |
|
|
|
features = feature_model(data) |
|
outputs = linear_classifiers(features) |
|
|
|
losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()} |
|
loss = sum(losses.values()) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
|
|
|
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
if iteration % 10 == 0: |
|
torch.cuda.synchronize() |
|
metric_logger.update(loss=loss.item()) |
|
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) |
|
print("lr", optimizer.param_groups[0]["lr"]) |
|
|
|
if iteration - start_iter > 5: |
|
if iteration % running_checkpoint_period == 0: |
|
torch.cuda.synchronize() |
|
if distributed.is_main_process(): |
|
logger.info("Checkpointing running_checkpoint") |
|
periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration) |
|
torch.cuda.synchronize() |
|
periodic_checkpointer.step(iteration) |
|
|
|
if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1: |
|
_ = evaluate_linear_classifiers( |
|
feature_model=feature_model, |
|
linear_classifiers=remove_ddp_wrapper(linear_classifiers), |
|
data_loader=val_data_loader, |
|
metrics_file_path=metrics_file_path, |
|
prefixstring=f"ITER: {iteration}", |
|
metric_type=metric_type, |
|
training_num_classes=training_num_classes, |
|
iteration=iteration, |
|
class_mapping=val_class_mapping, |
|
) |
|
torch.cuda.synchronize() |
|
|
|
iteration = iteration + 1 |
|
|
|
val_results_dict = evaluate_linear_classifiers( |
|
feature_model=feature_model, |
|
linear_classifiers=remove_ddp_wrapper(linear_classifiers), |
|
data_loader=val_data_loader, |
|
metrics_file_path=metrics_file_path, |
|
metric_type=metric_type, |
|
training_num_classes=training_num_classes, |
|
iteration=iteration, |
|
class_mapping=val_class_mapping, |
|
) |
|
return val_results_dict, feature_model, linear_classifiers, iteration |
|
|
|
|
|
def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type): |
|
test_dataset = make_dataset( |
|
dataset_str=test_dataset_str, |
|
transform=make_classification_eval_transform(), |
|
) |
|
test_data_loader = make_data_loader( |
|
dataset=test_dataset, |
|
batch_size=batch_size, |
|
num_workers=num_workers, |
|
sampler_type=SamplerType.DISTRIBUTED, |
|
drop_last=False, |
|
shuffle=False, |
|
persistent_workers=False, |
|
collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None, |
|
) |
|
return test_data_loader |
|
|
|
|
|
def test_on_datasets( |
|
feature_model, |
|
linear_classifiers, |
|
test_dataset_strs, |
|
batch_size, |
|
num_workers, |
|
test_metric_types, |
|
metrics_file_path, |
|
training_num_classes, |
|
iteration, |
|
best_classifier_on_val, |
|
prefixstring="", |
|
test_class_mappings=[None], |
|
): |
|
results_dict = {} |
|
for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types): |
|
logger.info(f"Testing on {test_dataset_str}") |
|
test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type) |
|
dataset_results_dict = evaluate_linear_classifiers( |
|
feature_model, |
|
remove_ddp_wrapper(linear_classifiers), |
|
test_data_loader, |
|
metric_type, |
|
metrics_file_path, |
|
training_num_classes, |
|
iteration, |
|
prefixstring="", |
|
class_mapping=class_mapping, |
|
best_classifier_on_val=best_classifier_on_val, |
|
) |
|
results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"] |
|
return results_dict |
|
|
|
|
|
def run_eval_linear( |
|
model, |
|
output_dir, |
|
train_dataset_str, |
|
val_dataset_str, |
|
batch_size, |
|
epochs, |
|
epoch_length, |
|
num_workers, |
|
save_checkpoint_frequency, |
|
eval_period_iterations, |
|
learning_rates, |
|
autocast_dtype, |
|
test_dataset_strs=None, |
|
resume=True, |
|
classifier_fpath=None, |
|
val_class_mapping_fpath=None, |
|
test_class_mapping_fpaths=[None], |
|
val_metric_type=MetricType.MEAN_ACCURACY, |
|
test_metric_types=None, |
|
): |
|
seed = 0 |
|
|
|
if test_dataset_strs is None: |
|
test_dataset_strs = [val_dataset_str] |
|
if test_metric_types is None: |
|
test_metric_types = [val_metric_type] * len(test_dataset_strs) |
|
else: |
|
assert len(test_metric_types) == len(test_dataset_strs) |
|
assert len(test_dataset_strs) == len(test_class_mapping_fpaths) |
|
|
|
train_transform = make_classification_train_transform() |
|
train_dataset = make_dataset( |
|
dataset_str=train_dataset_str, |
|
transform=train_transform, |
|
) |
|
training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int)))) |
|
sampler_type = SamplerType.SHARDED_INFINITE |
|
|
|
|
|
n_last_blocks_list = [1, 4] |
|
n_last_blocks = max(n_last_blocks_list) |
|
autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype) |
|
feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx) |
|
sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda()) |
|
|
|
linear_classifiers, optim_param_groups = setup_linear_classifiers( |
|
sample_output, |
|
n_last_blocks_list, |
|
learning_rates, |
|
batch_size, |
|
training_num_classes, |
|
) |
|
|
|
optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0) |
|
max_iter = epochs * epoch_length |
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0) |
|
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler) |
|
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1 |
|
train_data_loader = make_data_loader( |
|
dataset=train_dataset, |
|
batch_size=batch_size, |
|
num_workers=num_workers, |
|
shuffle=True, |
|
seed=seed, |
|
sampler_type=sampler_type, |
|
sampler_advance=start_iter, |
|
drop_last=True, |
|
persistent_workers=True, |
|
) |
|
val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type) |
|
|
|
checkpoint_period = save_checkpoint_frequency * epoch_length |
|
|
|
if val_class_mapping_fpath is not None: |
|
logger.info(f"Using class mapping from {val_class_mapping_fpath}") |
|
val_class_mapping = np.load(val_class_mapping_fpath) |
|
else: |
|
val_class_mapping = None |
|
|
|
test_class_mappings = [] |
|
for class_mapping_fpath in test_class_mapping_fpaths: |
|
if class_mapping_fpath is not None and class_mapping_fpath != "None": |
|
logger.info(f"Using class mapping from {class_mapping_fpath}") |
|
class_mapping = np.load(class_mapping_fpath) |
|
else: |
|
class_mapping = None |
|
test_class_mappings.append(class_mapping) |
|
|
|
metrics_file_path = os.path.join(output_dir, "results_eval_linear.json") |
|
val_results_dict, feature_model, linear_classifiers, iteration = eval_linear( |
|
feature_model=feature_model, |
|
linear_classifiers=linear_classifiers, |
|
train_data_loader=train_data_loader, |
|
val_data_loader=val_data_loader, |
|
metrics_file_path=metrics_file_path, |
|
optimizer=optimizer, |
|
scheduler=scheduler, |
|
output_dir=output_dir, |
|
max_iter=max_iter, |
|
checkpoint_period=checkpoint_period, |
|
running_checkpoint_period=epoch_length, |
|
eval_period=eval_period_iterations, |
|
metric_type=val_metric_type, |
|
training_num_classes=training_num_classes, |
|
resume=resume, |
|
val_class_mapping=val_class_mapping, |
|
classifier_fpath=classifier_fpath, |
|
) |
|
results_dict = {} |
|
if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str: |
|
results_dict = test_on_datasets( |
|
feature_model, |
|
linear_classifiers, |
|
test_dataset_strs, |
|
batch_size, |
|
0, |
|
test_metric_types, |
|
metrics_file_path, |
|
training_num_classes, |
|
iteration, |
|
val_results_dict["best_classifier"]["name"], |
|
prefixstring="", |
|
test_class_mappings=test_class_mappings, |
|
) |
|
results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"] |
|
results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"] |
|
logger.info("Test Results Dict " + str(results_dict)) |
|
|
|
return results_dict |
|
|
|
|
|
def main(args): |
|
model, autocast_dtype = setup_and_build_model(args) |
|
run_eval_linear( |
|
model=model, |
|
output_dir=args.output_dir, |
|
train_dataset_str=args.train_dataset_str, |
|
val_dataset_str=args.val_dataset_str, |
|
test_dataset_strs=args.test_dataset_strs, |
|
batch_size=args.batch_size, |
|
epochs=args.epochs, |
|
epoch_length=args.epoch_length, |
|
num_workers=args.num_workers, |
|
save_checkpoint_frequency=args.save_checkpoint_frequency, |
|
eval_period_iterations=args.eval_period_iterations, |
|
learning_rates=args.learning_rates, |
|
autocast_dtype=autocast_dtype, |
|
resume=not args.no_resume, |
|
classifier_fpath=args.classifier_fpath, |
|
val_metric_type=args.val_metric_type, |
|
test_metric_types=args.test_metric_types, |
|
val_class_mapping_fpath=args.val_class_mapping_fpath, |
|
test_class_mapping_fpaths=args.test_class_mapping_fpaths, |
|
) |
|
return 0 |
|
|
|
|
|
if __name__ == "__main__": |
|
description = "DINOv2 linear evaluation" |
|
args_parser = get_args_parser(description=description) |
|
args = args_parser.parse_args() |
|
sys.exit(main(args)) |
|
|