File size: 3,099 Bytes
08c3d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: mit
language:
- en
pipeline_tag: text-generation
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
tags:
- chat
library_name: transformers
---
# Model Overview
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 1/28/2025
Quantized version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B/) to FP8 data type, ready for inference with SGLang >= 0.3 or vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
## Deployment
### Use with SGLang
```bash
python -m sglang.launch_server --model-path JamAndTeaStudios/DeepSeek-R1-Distill-Qwen-32B-FP8-Dynamic \
--port 30000 --host 0.0.0.0
```
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
<details>
<summary>Model Creation Code</summary>
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
MODEL_ID = "google/gemma-2-27b-it"
# 1) Load model.
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# 2) Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per channel via ptq
# * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# 3) Apply quantization and save in compressed-tensors format.
OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(
model=model,
recipe=recipe,
tokenizer=tokenizer,
output_dir=OUTPUT_DIR,
)
# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")
```
</details>
## Evaluation
TBA
## Play Retail Mage
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f908994110f1806f2c356a/vsWXpQqgHIqN4f4BM-RfS.png)
[Retail Mage (Steam)](https://store.steampowered.com/app/3224380/Retail_Mage/) is an immersive sim that uses online LLM inference in almost all features in the gameplay!
Reviews
“A true to life experience detailing how customer service really works.”
10/10 – kpolupo
“I enjoyed how many things were flammable in the store.”
5/5 – mr_srsbsns
“I've only known that talking little crow plushie in MageMart for a day and a half but if anything happened to him I would petrify everyone in this store and then myself.”
7/7 – neondenki |