jaronfei commited on
Commit
c61bdc1
·
1 Parent(s): 9163239

first commit

Browse files
README.md CHANGED
@@ -1,3 +1,89 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ ## Model Summary
6
+
7
+ Video-CCAM-14B-v1.1 is a lightweight Video-MLLM developed by TencentQQ Multimedia Research Team.
8
+
9
+ ## Usage
10
+
11
+ Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.9/3.10.
12
+ ```
13
+ pip install -U pip torch transformers peft decord pysubs2 imageio
14
+ ```
15
+
16
+ ## Inference
17
+
18
+ ```
19
+ import os
20
+ import torch
21
+ from PIL import Image
22
+ from transformers import AutoModel
23
+
24
+ from eval import load_decord
25
+
26
+ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
27
+
28
+ videoccam = AutoModel.from_pretrained(
29
+ '<your_local_path_1>',
30
+ trust_remote_code=True,
31
+ torch_dtype=torch.bfloat16,
32
+ device_map='auto',
33
+ _attn_implementation='flash_attention_2',
34
+ # llm_name_or_path='<your_local_llm_path>',
35
+ # vision_encoder_name_or_path='<your_local_vision_encoder_path>'
36
+ )
37
+
38
+
39
+ messages = [
40
+ [
41
+ {
42
+ 'role': 'user',
43
+ 'content': '<image>\nDescribe this image in detail.'
44
+ }
45
+ ], [
46
+ {
47
+ 'role': 'user',
48
+ 'content': '<video>\nDescribe this video in detail.'
49
+ }
50
+ ]
51
+ ]
52
+
53
+ images = [
54
+ Image.open('assets/example_image.jpg').convert('RGB'),
55
+ load_decord('assets/example_video.mp4', sample_type='uniform', num_frames=32)
56
+ ]
57
+
58
+ response = videoccam.chat(messages, images, max_new_tokens=512, do_sample=False)
59
+
60
+ print(response)
61
+ ```
62
+
63
+ Please refer to [Video-CCAM](https://github.com/QQ-MM/Video-CCAM) for more details.
64
+
65
+ ### Benchmarks
66
+
67
+ |Benchmark|Video-CCAM-14B|Video-CCAM-14B-v1.1|
68
+ |:-:|:-:|:-:|
69
+ |MVBench (32 frames)|61.88|63.08|
70
+ |MSVD-QA (32 frames)|76.3/4.1|78.6/4.2|
71
+ |MSRVTT-QA (32 frames)|59.0/3.5|66.3/3.8|
72
+ |ActivityNet-QA (32 frames)|58.3/3.7|60.4/3.8|
73
+ |TGIF-QA (32 frames)|84.1/4.5|84.4/4.5|
74
+ |Video-MME (w/o sub, 96 frames)|53.2|53.9|
75
+ |Video-MME (w sub, 96 frames)|57.2|56.1|
76
+ |MLVU (M-Avg, 96 frames)|60.2|63.1|
77
+ |MLVU (G-Avg, 96 frames)|4.11|4.01|
78
+ |VideoVista (96 frames)|68.43|76.55|
79
+
80
+ * The accuracies and scores of MSVD-QA,MSRVTT-QA,ActivityNet-QA,TGIF-QA are evaluated by `gpt-3.5-turbo-0125`.
81
+
82
+ ## Acknowledgement
83
+
84
+ * [xtuner](https://github.com/InternLM/xtuner): Video-CCAM-14B is trained using the xtuner framework. Thanks for their excellent works!
85
+ * [Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct): Powerful language models developed by Microsoft.
86
+ * [SigLIP SO400M](https://huggingface.co/google/siglip-so400m-patch14-384): Outstanding vision encoder developed by Google.
87
+
88
+ ## License
89
+ The model is licensed under the MIT license.
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "VideoCCAM"
5
+ ],
6
+ "llm_name_or_path": "microsoft/Phi-3-medium-4k-instruct",
7
+ "vision_encoder_name_or_path": "google/siglip-so400m-patch14-384",
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_videoccam.VideoCCAMConfig",
10
+ "AutoModel": "modeling_videoccam.VideoCCAM"
11
+ },
12
+ "image_token": "<image>",
13
+ "video_token": "<video>",
14
+ "vision_select_layer": -2,
15
+ "vision_max_chunk_size": 0,
16
+ "_attn_implementation": "flash_attention_2",
17
+ "torch_dtype": "bfloat16",
18
+ "transformers_version": "4.44.0"
19
+ }
configuration_videoccam.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ ================================================
5
+ @author: Jaron
6
+ @time: 2024/08/21 17:51:45
7
+ @email: [email protected]
8
+ @description:
9
+ ================================================
10
+ """
11
+ from transformers import PretrainedConfig
12
+
13
+
14
+ class VideoCCAMConfig(PretrainedConfig):
15
+ model_type = 'videoccam'
16
+ _auto_class = 'AutoConfig'
17
+
18
+ def __init__(
19
+ self,
20
+ llm_name_or_path: str = None,
21
+ projector_name_or_path: str = None,
22
+ vision_encoder_name_or_path: str = None,
23
+ image_token: str = '<image>',
24
+ video_token: str = '<video>',
25
+ vision_select_layer: int = -2,
26
+ vision_max_chunk_size: int = 0,
27
+ _attn_implementation: str = 'flash_attention_2',
28
+ **kwargs
29
+ ):
30
+ super().__init__(**kwargs)
31
+ self.llm_name_or_path = llm_name_or_path
32
+ self.projector_name_or_path = projector_name_or_path
33
+ self.vision_encoder_name_or_path = vision_encoder_name_or_path
34
+ self.image_token = image_token
35
+ self.video_token = video_token
36
+ self.vision_select_layer = vision_select_layer
37
+ self.vision_max_chunk_size = vision_max_chunk_size
38
+ self._attn_implementation = _attn_implementation
llm_adapter/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-medium-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
llm_adapter/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-medium-4k-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 512,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "down_proj",
25
+ "gate_up_proj",
26
+ "qkv_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
llm_adapter/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2315ef91ae836c70d8a6bfc3b47cdf40cce109d40b880b38cf978061ded96be1
3
+ size 3565203280
modeling_videoccam.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ ================================================
5
+ @author: Jaron
6
+ @time: 2024/08/21 17:41:52
7
+ @email: [email protected]
8
+ @description: Video-CCAM
9
+ ================================================
10
+ """
11
+ import torch
12
+ import os.path as osp
13
+
14
+ from PIL import Image
15
+ from peft import PeftModel
16
+ from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, SiglipVisionModel, SiglipImageProcessor, GenerationConfig
17
+
18
+
19
+ from .configuration_videoccam import VideoCCAMConfig
20
+
21
+
22
+ class VideoCCAM(PreTrainedModel):
23
+ config_class = VideoCCAMConfig
24
+ _auto_class = 'AutoModel'
25
+ supports_gradient_checkpointing = True
26
+ _supports_flash_attn_2 = True
27
+ _supports_sdpa = True
28
+
29
+ def __init__(self, config, device_map: str = 'auto'):
30
+ super().__init__(config)
31
+ self.image_token = config.image_token
32
+ self.video_token = config.video_token
33
+ self.vision_select_layer = config.vision_select_layer
34
+ self.vision_max_chunk_size = config.vision_max_chunk_size
35
+ self.gradient_checkpointing = False
36
+
37
+ self.projector = AutoModel.from_pretrained(
38
+ config.projector_name_or_path,
39
+ device_map=device_map,
40
+ trust_remote_code=True,
41
+ torch_dtype=config.torch_dtype,
42
+ attn_implementation='sdpa' if config._attn_implementation == 'flash_attention_2' else config._attn_implementation # CCAM does not support flash_attention_2
43
+ )
44
+ self.llm = AutoModelForCausalLM.from_pretrained(
45
+ config.llm_name_or_path,
46
+ device_map=device_map,
47
+ torch_dtype=config.torch_dtype,
48
+ attn_implementation=config._attn_implementation
49
+ )
50
+ self.tokenizer = AutoTokenizer.from_pretrained(
51
+ config.llm_name_or_path,
52
+ additional_special_tokens=[self.image_token, self.video_token]
53
+ )
54
+ self.generation_config = GenerationConfig.from_pretrained(config.llm_name_or_path)
55
+ self.image_token_id, self.video_token_id = self.tokenizer.convert_tokens_to_ids([self.image_token, self.video_token])
56
+ self.vision_encoder = SiglipVisionModel.from_pretrained(
57
+ config.vision_encoder_name_or_path,
58
+ device_map=device_map,
59
+ torch_dtype=config.torch_dtype,
60
+ attn_implementation=config._attn_implementation
61
+ )
62
+ self.image_processor = SiglipImageProcessor.from_pretrained(
63
+ config.vision_encoder_name_or_path
64
+ )
65
+
66
+ def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
67
+ if gradient_checkpointing_kwargs is None:
68
+ gradient_checkpointing_kwargs = dict(use_reentrant=False)
69
+ self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs)
70
+ self.vision_encoder.gradient_checkpointing_enable(gradient_checkpointing_kwargs)
71
+
72
+ def forward_visual_embeds(self, pixel_values: torch.Tensor) -> torch.Tensor:
73
+ if self.vision_select_layer in {-1, self.vision_encoder.config.num_hidden_layers}:
74
+ visual_embeds = self.vision_encoder(pixel_values, output_hidden_states=False).last_hidden_state
75
+ else:
76
+ visual_embeds = self.vision_encoder(pixel_values, output_hidden_states=True).hidden_states[self.vision_select_layer]
77
+ return visual_embeds
78
+
79
+ @torch.inference_mode
80
+ def chat(
81
+ self,
82
+ messages: list[list[dict]],
83
+ images: list[Image.Image, list[Image.Image]] = None,
84
+ generation_config = None,
85
+ batch_generate: bool = False,
86
+ visual_embeds: torch.Tensor = None,
87
+ return_visual_embeds: bool = False,
88
+ **kwargs
89
+ ):
90
+ if generation_config is None:
91
+ generation_config = self.generation_config
92
+
93
+ # compute visual embeds
94
+ if visual_embeds is None:
95
+ _images, split_size = [], []
96
+ for i in images:
97
+ if isinstance(i, Image.Image):
98
+ _images.append(i)
99
+ split_size.append(1)
100
+ else:
101
+ _images += i
102
+ split_size.append(len(i))
103
+ pixel_values = self.image_processor(
104
+ _images,
105
+ return_tensors='pt'
106
+ )['pixel_values'].to(
107
+ dtype=self.vision_encoder.get_input_embeddings().weight.dtype,
108
+ device=self.vision_encoder.get_input_embeddings().weight.device
109
+ )
110
+ if 0 < self.vision_max_chunk_size < len(pixel_values):
111
+ split_idx = list(range(0, len(pixel_values), self.vision_max_chunk_size)) + [-1]
112
+ visual_embeds = torch.cat([
113
+ self.forward_visual_embeds(pixel_values[le:ri])
114
+ for le, ri in zip(split_idx[:-1], split_idx[1:])
115
+ ], dim=0)
116
+ else:
117
+ visual_embeds = self.forward_visual_embeds(pixel_values)
118
+ visual_embeds = self.projector(visual_embeds.split(split_size, dim=0))
119
+
120
+ # compute textual embeds
121
+ device = self.llm.get_input_embeddings().weight.device
122
+ input_ids = self.tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True) # list[list[int]]
123
+ _input_ids, split_idx = [], [0]
124
+ for i in input_ids:
125
+ _input_ids += i
126
+ split_idx.append(split_idx[-1] + len(i))
127
+ _input_ids = torch.tensor(_input_ids, dtype=torch.long, device=device)
128
+ visual_idx = torch.where((_input_ids == self.image_token_id) | (_input_ids == self.video_token_id))[0].tolist()
129
+ assert len(visual_idx) == len(visual_embeds), f'The number of visual tokens ({len(visual_idx)}) should be equal to the number of visual features ({len(visual_embeds)}).'
130
+
131
+ _input_ids[visual_idx] = 0 # avoid index overflow
132
+ _inputs_embeds = self.llm.get_input_embeddings()(_input_ids)
133
+ inputs_embeds, cur_visual_pointer = [], 0
134
+ for start_idx, end_idx in zip(split_idx[:-1], split_idx[1:]):
135
+ if cur_visual_pointer < len(visual_idx) and visual_idx[cur_visual_pointer] < end_idx:
136
+ mid_idx = visual_idx[cur_visual_pointer]
137
+ embeds = [_inputs_embeds[start_idx:mid_idx], visual_embeds[cur_visual_pointer]]
138
+ cur_visual_pointer += 1
139
+ while cur_visual_pointer < len(visual_idx) and visual_idx[cur_visual_pointer] < end_idx:
140
+ embeds += [_inputs_embeds[mid_idx+1:visual_idx[cur_visual_pointer]], visual_embeds[cur_visual_pointer]]
141
+ mid_idx = visual_idx[cur_visual_pointer]
142
+ cur_visual_pointer += 1
143
+ embeds.append(_inputs_embeds[mid_idx+1:end_idx])
144
+ inputs_embeds.append(torch.cat(embeds, dim=0))
145
+ # Pure Text
146
+ else:
147
+ inputs_embeds.append(_inputs_embeds[start_idx:end_idx])
148
+
149
+ if batch_generate:
150
+ B, L = len(inputs_embeds), max(i.size(0) for i in inputs_embeds)
151
+ pad_embeds = self.llm.get_input_embeddings()(
152
+ torch.tensor([self.tokenizer.pad_token_id], dtype=torch.long, device=device)
153
+ ) # (1, C)
154
+ inputs_embeds_list = []
155
+ attention_mask = torch.zeros(B, L, dtype=torch.long, device=device)
156
+ for i, embeds in enumerate(inputs_embeds):
157
+ l = embeds.size(0)
158
+ inputs_embeds_list += [pad_embeds.expand(L - l, -1), embeds]
159
+ attention_mask[i, -l:] = 1
160
+ inputs_embeds = torch.cat(inputs_embeds_list, dim=0).view(B, L, -1)
161
+ output_ids = self.llm.generate(
162
+ inputs_embeds=inputs_embeds,
163
+ attention_mask=attention_mask,
164
+ generation_config=generation_config,
165
+ **kwargs
166
+ )
167
+ else:
168
+ output_ids = []
169
+ for embeds in inputs_embeds:
170
+ output_ids.append(self.llm.generate(
171
+ inputs_embeds=embeds[None],
172
+ attention_mask=torch.ones(1, embeds.size(0), dtype=torch.long, device=device),
173
+ generation_config=generation_config,
174
+ **kwargs
175
+ )[0])
176
+ prediction = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
177
+
178
+ if return_visual_embeds:
179
+ return prediction, visual_embeds
180
+ else:
181
+ return prediction
182
+
183
+ @classmethod
184
+ def from_pretrained(
185
+ cls,
186
+ pretrained_model_name_or_path: str,
187
+ *args,
188
+ config: VideoCCAMConfig = None,
189
+ torch_dtype: torch.dtype = torch.bfloat16,
190
+ device_map: str = 'auto',
191
+ **kwargs
192
+ ) -> PreTrainedModel:
193
+ merge_pretrained_lora = kwargs.pop('merge_pretrained_lora', True)
194
+
195
+ config.torch_dtype = torch_dtype
196
+ config.projector_name_or_path = osp.join(pretrained_model_name_or_path, 'projector')
197
+ if osp.isdir(cur_path := osp.join(pretrained_model_name_or_path, 'llm')):
198
+ config.llm_name_or_path = cur_path
199
+ if osp.isdir(cur_path := osp.join(pretrained_model_name_or_path, 'vision_encoder')):
200
+ config.vision_encoder_name_or_path = cur_path
201
+ model = cls(config, device_map)
202
+
203
+ # load LoRA if exists
204
+ if osp.exists(cur_path := osp.join(pretrained_model_name_or_path, 'llm_adapter')):
205
+ model.llm = PeftModel.from_pretrained(model.llm, cur_path, device_map=device_map)
206
+ print(f'Load LLM adapter from {cur_path}.')
207
+ if merge_pretrained_lora:
208
+ model.llm = model.llm.merge_and_unload()
209
+ if osp.exists(cur_path := osp.join(pretrained_model_name_or_path, 'vision_encoder_adapter')):
210
+ model.vision_encoder = PeftModel.from_pretrained(model.vision_encoder, cur_path, device_map=device_map)
211
+ print(f'Load vision encoder adapter from {cur_path}.')
212
+ if merge_pretrained_lora:
213
+ model.vision_encoder = model.vision_encoder.merge_and_unload()
214
+
215
+ return model
projector/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "CCAMModel"
5
+ ],
6
+ "attention_bias": true,
7
+ "attention_dropout": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_ccam.CCAMConfig",
10
+ "AutoModel": "modeling_ccam.CCAMModel"
11
+ },
12
+ "cross_hidden_size": 1152,
13
+ "dropout": 0.1,
14
+ "hidden_act": "swiglu",
15
+ "hidden_size": 1024,
16
+ "intermediate_size": 4096,
17
+ "layer_norm_eps": 1e-05,
18
+ "mlp_bias": true,
19
+ "model_type": "ccam",
20
+ "num_heads": 16,
21
+ "num_key_value_heads": 16,
22
+ "num_query": 1024,
23
+ "output_size": 5120,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.44.0"
26
+ }
projector/configuration_ccam.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ ================================================
5
+ @author: Jaron
6
+ @time: 2024/07/10 19:43:31
7
+ @email: [email protected]
8
+ @description: Causal Cross-Attention Mask (CCAM)
9
+ ================================================
10
+ """
11
+
12
+ from transformers import PretrainedConfig
13
+
14
+
15
+ class CCAMConfig(PretrainedConfig):
16
+ model_type = 'ccam'
17
+ _auto_class = 'AutoConfig'
18
+
19
+ def __init__(
20
+ self,
21
+ num_query: int = 1024,
22
+ num_heads: int = 16,
23
+ hidden_size: int = 1024,
24
+ intermediate_size: int = 4096,
25
+ num_key_value_heads: int = 16,
26
+ dropout: float = 0.1,
27
+ mlp_bias: bool = True,
28
+ hidden_act: str = 'swiglu',
29
+ output_size: int = None, # inferred from llm
30
+ attention_bias: bool = True,
31
+ layer_norm_eps: float = 1e-5,
32
+ cross_hidden_size: int = None, # inferred from vision encoder
33
+ attention_dropout: float = 0.1,
34
+ _attn_implementation: str = 'sdpa',
35
+ **kwargs
36
+ ):
37
+ super().__init__(**kwargs)
38
+ self.dropout = dropout
39
+ self.mlp_bias = mlp_bias
40
+ self.num_query = num_query
41
+ self.num_heads = num_heads
42
+ self.hidden_act = hidden_act
43
+ self.hidden_size = hidden_size
44
+ self.output_size = output_size
45
+ self.layer_norm_eps = layer_norm_eps
46
+ self.attention_bias = attention_bias
47
+ self.intermediate_size = intermediate_size
48
+ self.cross_hidden_size = cross_hidden_size
49
+ self.attention_dropout = attention_dropout
50
+ self.num_key_value_heads = num_key_value_heads
51
+ self._attn_implementation = _attn_implementation
projector/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cfa3239281d5ddea3c0709716d548f21c8640fcfe063ee35339e8f393d8a3b4
3
+ size 69774840
projector/modeling_ccam.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ ================================================
5
+ @author: Jaron
6
+ @time: 2024/07/10 19:47:01
7
+ @email: [email protected]
8
+ @description: Causal Cross-Attention Mask (CCAM)
9
+ ================================================
10
+ """
11
+
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+
16
+ from transformers import PreTrainedModel
17
+ from transformers.activations import ACT2FN
18
+
19
+ from .configuration_ccam import CCAMConfig
20
+
21
+
22
+ class CCAMMLP(nn.Module):
23
+
24
+ def __init__(self, config):
25
+ super().__init__()
26
+ self.hidden_act = config.hidden_act
27
+ self.hidden_size = config.hidden_size
28
+ self.intermediate_size = config.intermediate_size
29
+ self.output_size = config.output_size
30
+ if self.hidden_act == 'swiglu':
31
+ self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.mlp_bias)
32
+ self.act_fn = ACT2FN['silu']
33
+ else:
34
+ self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
35
+ self.act_fn = ACT2FN[self.hidden_act]
36
+ self.fc2 = nn.Linear(self.intermediate_size, self.output_size, bias=config.mlp_bias)
37
+
38
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
39
+ hidden_states = self.fc1(hidden_states)
40
+ if self.hidden_act == 'swiglu':
41
+ gate, up = hidden_states.chunk(2, dim=-1)
42
+ hidden_states = self.act_fn(gate) * up
43
+ else:
44
+ hidden_states = self.act_fn(hidden_states)
45
+ hidden_states = self.fc2(hidden_states)
46
+ return hidden_states
47
+
48
+
49
+ class CCAMCrossAttention(nn.Module):
50
+ """Cross-attention layer of the CCAM projector.
51
+
52
+ Flash Attention 2 is not supported since the mask may be neither full nor causal. Only support `attn_implementation` as `eager` and `sdpa`.
53
+ """
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.num_heads = config.num_heads
58
+ self.hidden_size = config.hidden_size
59
+ self.attention_bias = config.attention_bias
60
+ self.attention_dropout = config.attention_dropout
61
+ self.cross_hidden_size = config.cross_hidden_size
62
+ self.num_key_value_heads = config.num_key_value_heads
63
+ self.attn_implementation = config._attn_implementation
64
+ self.head_dim = self.hidden_size // self.num_heads
65
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
66
+
67
+ assert self.head_dim * self.num_heads == self.hidden_size, f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`: {self.num_heads}).'
68
+
69
+ self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.attention_bias)
70
+ self.k_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=self.attention_bias)
71
+ self.v_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=self.attention_bias)
72
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.attention_bias)
73
+
74
+ def forward(
75
+ self,
76
+ hidden_states: torch.Tensor, # (B, Q, C)
77
+ cross_hidden_states: torch.Tensor, # (B, L, C')
78
+ attention_mask: torch.Tensor = None # (Q, L), '-inf' means masked, 0 means not masked
79
+ ) -> torch.Tensor: # (B, Q, C)
80
+ B, Q, C = hidden_states.size()
81
+ query_states = self.q_proj(hidden_states) # (B, Q, C)
82
+ key_states = self.k_proj(cross_hidden_states)
83
+ value_states = self.v_proj(cross_hidden_states)
84
+
85
+ L = key_states.size(1)
86
+ query_states = query_states.view(B, Q, self.num_heads, self.head_dim).transpose(1, 2)
87
+ key_states = key_states.view(B, L, self.num_key_value_heads, self.head_dim).transpose(1, 2)
88
+ value_states = value_states.view(B, L, self.num_key_value_heads, self.head_dim).transpose(1, 2)
89
+ if self.num_key_value_groups > 1:
90
+ key_states = key_states.repeat_interleave(repeats=self.num_key_value_groups, dim=1)
91
+ value_states = value_states.repeat_interleave(repeats=self.num_key_value_groups, dim=1)
92
+
93
+ if self.attn_implementation == 'eager':
94
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / self.head_dim ** 0.5 # (B, num_heads, Q, L)
95
+ if attention_mask is not None:
96
+ attn_weights = attn_weights + attention_mask.view(1, 1, Q, L)
97
+ # upcast attention to fp32
98
+ attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
99
+ attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
100
+ attn_output = torch.matmul(attn_weights, value_states) # (B, num_heads, Q, head_dim)
101
+ else: # 'sdpa'
102
+ # there are bugs in torch <=2.1.0, requiring qkv as contiguous(), be careful
103
+ attn_output = F.scaled_dot_product_attention(
104
+ query_states,
105
+ key_states,
106
+ value_states,
107
+ attn_mask=attention_mask,
108
+ dropout_p=self.attention_dropout if self.training else 0.0
109
+ )
110
+ attn_output = attn_output.transpose(1, 2).reshape(B, Q, C) # (B, Q, C)
111
+ attn_output = self.o_proj(attn_output)
112
+
113
+ return attn_output
114
+
115
+
116
+ class CCAMModel(PreTrainedModel):
117
+ """Causal Cross-Attention Mask Projector"""
118
+ config_class = CCAMConfig
119
+ _auto_class = 'AutoModel'
120
+ _supports_sdpa = True
121
+ _no_split_modules = ['CCAMCrossAttention', 'CCAMMLP']
122
+
123
+ def __init__(self, config):
124
+ super().__init__(config)
125
+ self.num_query = config.num_query
126
+ self.hidden_size = config.hidden_size
127
+ self.output_size = config.output_size
128
+ self.cross_hidden_size = config.cross_hidden_size
129
+
130
+ self.query = nn.Parameter(torch.empty(1, self.num_query, self.hidden_size).normal_(mean=.0, std=.02))
131
+ self.pre_ccam = nn.Sequential(
132
+ nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps),
133
+ nn.Dropout(config.dropout)
134
+ )
135
+ self.ccam = CCAMCrossAttention(config)
136
+ self.post_ccam = nn.Sequential(
137
+ nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps),
138
+ nn.Dropout(config.dropout),
139
+ CCAMMLP(config)
140
+ )
141
+
142
+ self.post_init()
143
+
144
+ def _init_weights(self, module):
145
+ """Initialize the weights"""
146
+ if isinstance(module, nn.Linear):
147
+ module.weight.data.normal_(mean=.0, std=.02)
148
+ if hasattr(module, "bias") and module.bias is not None:
149
+ module.bias.data.zero_()
150
+ elif isinstance(module, nn.LayerNorm):
151
+ module.weight.data.fill_(1.0)
152
+ module.bias.data.zero_()
153
+
154
+ def _get_mask(self, vision_hidden_state: torch.Tensor) -> torch.Tensor: # (Q, T*L)
155
+ """Compute CCAM Mask for vision hidden state
156
+
157
+ Args:
158
+ vision_hidden_state (torch.Tensor): (T, L, C)
159
+
160
+ Returns:
161
+ torch.Tensor: (Q, T*L) -inf means masked
162
+ """
163
+ T, L, _ = vision_hidden_state.size()
164
+ dtype, device = vision_hidden_state.dtype, vision_hidden_state.device
165
+ base_mask = torch.zeros(T, T, dtype=dtype, device=device)
166
+ t = torch.arange(T, device=device)
167
+ base_mask.masked_fill_(t > t[:, None], float('-inf'))
168
+ attention_mask = torch.zeros(self.num_query, T * L, dtype=dtype, device=device)
169
+ attention_mask[:self.num_query // T * T] = torch.kron(base_mask, torch.ones(self.num_query // T, L, dtype=dtype, device=device))
170
+ return attention_mask
171
+
172
+ def forward(self, vision_hidden_states: list[torch.Tensor]) -> torch.Tensor: # (B, Q, C)
173
+ """Forward function, do not collect batch due to the support of zero3
174
+
175
+ Args:
176
+ vision_hidden_states (list[torch.Tensor]): [(t0, L, C), (t1, L, C), ...]
177
+
178
+ Returns:
179
+ torch.Tensor: (B, Q, C)
180
+ """
181
+ output = []
182
+ for hidden_states in vision_hidden_states:
183
+ # reshape inputs and construct ccam masks
184
+ attention_mask = self._get_mask(hidden_states) # (Q, ti * L)
185
+ # forward
186
+ x = self.pre_ccam(self.query) # (1, Q, C)
187
+ x = self.ccam(
188
+ hidden_states=x, # (1, Q, C)
189
+ cross_hidden_states=hidden_states.flatten(0, 1)[None], # (1, ti * L, C')
190
+ attention_mask=attention_mask[None] # (1, Q, ti * L)
191
+ ) + x
192
+ x = self.post_ccam(x)
193
+ output.append(x)
194
+ output = torch.cat(output, dim=0)
195
+
196
+ return output
vision_encoder_adapter/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /group/40056/jaronfei/models/siglip-so400m-patch14-384
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
vision_encoder_adapter/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "SiglipVisionModel",
5
+ "parent_library": "transformers.models.siglip.modeling_siglip"
6
+ },
7
+ "base_model_name_or_path": "/group/40056/jaronfei/models/siglip-so400m-patch14-384",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 128,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "k_proj",
28
+ "fc1",
29
+ "v_proj",
30
+ "out_proj",
31
+ "fc2"
32
+ ],
33
+ "task_type": null,
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
vision_encoder_adapter/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dde55c1ecf838bc59c8d5292962b0a972be1a8a6e53d25ef4b5cdd97d41c94e
3
+ size 142557288