Upload Hamiltonian_final_version.ipynb
Browse files
Notebook/Hamiltonian_final_version.ipynb
ADDED
@@ -0,0 +1,1817 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"\"\"\"\n",
|
21 |
+
"This script implements corresponds to the experiments conducted for\n",
|
22 |
+
"weitting the paper \"Optimizing AI Reasoning: A Hamiltonian Dynamics Approach to\n",
|
23 |
+
"Multi-Hop Question Answering\".\n",
|
24 |
+
"\n",
|
25 |
+
"Author: Javier Marín\n",
|
26 |
+
"Email: [email protected]\n",
|
27 |
+
"Version: 1.0.0\n",
|
28 |
+
"Date: October 65, 2024\n",
|
29 |
+
"\n",
|
30 |
+
"License: MIT License\n",
|
31 |
+
"\n",
|
32 |
+
"Copyright (c) 2024 Javier Marín\n",
|
33 |
+
"\n",
|
34 |
+
"Permission is hereby granted, free of charge, to any person obtaining a copy\n",
|
35 |
+
"of this software and associated documentation files (the \"Software\"), to deal\n",
|
36 |
+
"in the Software without restriction, including without limitation the rights\n",
|
37 |
+
"to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n",
|
38 |
+
"copies of the Software, and to permit persons to whom the Software is\n",
|
39 |
+
"furnished to do so, subject to the following conditions:\n",
|
40 |
+
"\n",
|
41 |
+
"The above copyright notice and this permission notice shall be included in all\n",
|
42 |
+
"copies or substantial portions of the Software.\n",
|
43 |
+
"\n",
|
44 |
+
"THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n",
|
45 |
+
"IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n",
|
46 |
+
"FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n",
|
47 |
+
"AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n",
|
48 |
+
"LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n",
|
49 |
+
"OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n",
|
50 |
+
"SOFTWARE.\n",
|
51 |
+
"\n",
|
52 |
+
"Dependencies:\n",
|
53 |
+
"- Python 3.8+\n",
|
54 |
+
"- NumPy\n",
|
55 |
+
"- Pandas\n",
|
56 |
+
"- PyTorch\n",
|
57 |
+
"- Transformers\n",
|
58 |
+
"- Scikit-learn\n",
|
59 |
+
"- SciPy\n",
|
60 |
+
"- Statsmodels\n",
|
61 |
+
"- Matplotlib\n",
|
62 |
+
"- Seaborn\n",
|
63 |
+
"\n",
|
64 |
+
"For a full list of dependencies and their versions, see requirements.txt\n",
|
65 |
+
"\"\"\""
|
66 |
+
],
|
67 |
+
"metadata": {
|
68 |
+
"id": "T-57ivc-aTrA"
|
69 |
+
},
|
70 |
+
"execution_count": null,
|
71 |
+
"outputs": []
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"source": [
|
76 |
+
"## Imports"
|
77 |
+
],
|
78 |
+
"metadata": {
|
79 |
+
"id": "QUcpzyBmWpLv"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": null,
|
85 |
+
"metadata": {
|
86 |
+
"id": "l2rfFoVtIL6_"
|
87 |
+
},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"# Standard library imports\n",
|
91 |
+
"import os\n",
|
92 |
+
"import re\n",
|
93 |
+
"import time\n",
|
94 |
+
"\n",
|
95 |
+
"# Third-party imports\n",
|
96 |
+
"import numpy as np\n",
|
97 |
+
"import pandas as pd\n",
|
98 |
+
"import torch\n",
|
99 |
+
"import seaborn as sns\n",
|
100 |
+
"import matplotlib.pyplot as plt\n",
|
101 |
+
"from mpl_toolkits.mplot3d import Axes3D\n",
|
102 |
+
"\n",
|
103 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
104 |
+
"from statsmodels.multivariate.manova import MANOVA\n",
|
105 |
+
"from scipy import stats\n",
|
106 |
+
"from scipy.optimize import curve_fit\n",
|
107 |
+
"from scipy.integrate import odeint\n",
|
108 |
+
"from sklearn import (\n",
|
109 |
+
" metrics,\n",
|
110 |
+
" model_selection,\n",
|
111 |
+
" cluster,\n",
|
112 |
+
" decomposition,\n",
|
113 |
+
" feature_extraction,\n",
|
114 |
+
" linear_model\n",
|
115 |
+
")\n",
|
116 |
+
"\n",
|
117 |
+
"# Visualization settings\n",
|
118 |
+
"sns.set_theme(style=\"whitegrid\", context=\"paper\")\n",
|
119 |
+
"plt.rcParams['font.family'] = 'serif'\n",
|
120 |
+
"plt.rcParams['font.serif'] = ['Times New Roman'] + plt.rcParams['font.serif']"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "markdown",
|
125 |
+
"source": [
|
126 |
+
"## Load BERT pretrained model"
|
127 |
+
],
|
128 |
+
"metadata": {
|
129 |
+
"id": "4nApCVrOWkR3"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"source": [
|
135 |
+
"# Load pre-trained model and tokenizer\n",
|
136 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
|
137 |
+
"model = AutoModel.from_pretrained(\"bert-base-uncased\")"
|
138 |
+
],
|
139 |
+
"metadata": {
|
140 |
+
"id": "hT2I1H8BIOp_"
|
141 |
+
},
|
142 |
+
"execution_count": null,
|
143 |
+
"outputs": []
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"source": [
|
148 |
+
"## Load data"
|
149 |
+
],
|
150 |
+
"metadata": {
|
151 |
+
"id": "9KKw24bCWgWj"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"source": [
|
157 |
+
"# Load the OBQA dataset\n",
|
158 |
+
"df = pd.read_csv(\"obqa_chains.csv\", sep=\";\")\n",
|
159 |
+
"\n",
|
160 |
+
"# Ensure necessary columns exist\n",
|
161 |
+
"required_columns = ['QID', 'Chain#', 'Question', 'Answer', 'Fact1', 'Fact2', 'Turk']\n",
|
162 |
+
"missing_columns = [col for col in required_columns if col not in df.columns]\n",
|
163 |
+
"if missing_columns:\n",
|
164 |
+
" raise ValueError(f\"Missing required columns: {missing_columns}\")\n",
|
165 |
+
"\n",
|
166 |
+
"# Preprocess the data\n",
|
167 |
+
"df['Question'] = df['Question'] + \" \" + df['Answer'] # Combine question and answer\n",
|
168 |
+
"df['is_valid'] = df['Turk'].str.contains('yes', case=False, na=False)"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "g2f-T9koIOjH"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"source": [
|
179 |
+
"## Model embeddings"
|
180 |
+
],
|
181 |
+
"metadata": {
|
182 |
+
"id": "XdN9XTGOWdsh"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"source": [
|
188 |
+
"def get_bert_embedding(text):\n",
|
189 |
+
" \"\"\"Get BERT embedding for a given text.\"\"\"\n",
|
190 |
+
" inputs = tokenizer(text, return_tensors=\"pt\", padding=True, truncation=True, max_length=512)\n",
|
191 |
+
" with torch.no_grad():\n",
|
192 |
+
" outputs = model(**inputs)\n",
|
193 |
+
" return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()\n",
|
194 |
+
"\n",
|
195 |
+
"def refined_hamiltonian_energy(chain):\n",
|
196 |
+
" emb1 = get_bert_embedding(chain['Fact1'])\n",
|
197 |
+
" emb2 = get_bert_embedding(chain['Fact2'])\n",
|
198 |
+
" emb_q = get_bert_embedding(chain['Question'])\n",
|
199 |
+
"\n",
|
200 |
+
" # Refined kinetic term: measure of change between facts\n",
|
201 |
+
" T = np.linalg.norm(emb2 - emb1)\n",
|
202 |
+
"\n",
|
203 |
+
" # Refined potential term: measure of relevance to question\n",
|
204 |
+
" V = (np.dot(emb1, emb_q) + np.dot(emb2, emb_q)) / 2\n",
|
205 |
+
"\n",
|
206 |
+
" # Total \"Hamiltonian\" energy: balance between change and relevance\n",
|
207 |
+
" H = T - V\n",
|
208 |
+
"\n",
|
209 |
+
" return H, T, V\n",
|
210 |
+
"\n",
|
211 |
+
"\n",
|
212 |
+
"# Analyze energy conservation\n",
|
213 |
+
"def energy_conservation_score(chain):\n",
|
214 |
+
" _, T, V = refined_hamiltonian_energy(chain)\n",
|
215 |
+
" # Measure how balanced T and V are\n",
|
216 |
+
" return 1 / (1 + abs(T - V)) # Now always between 0 and 1, 1 being perfect balance\n",
|
217 |
+
"\n",
|
218 |
+
"\n",
|
219 |
+
"\n",
|
220 |
+
"# Calculate refined energies and scores\n",
|
221 |
+
"df['H_energy'], df['T_energy'], df['V_energy'] = zip(*df.apply(refined_hamiltonian_energy, axis=1))\n",
|
222 |
+
"df['energy_conservation'] = df.apply(energy_conservation_score, axis=1)"
|
223 |
+
],
|
224 |
+
"metadata": {
|
225 |
+
"id": "3q4EMfekIOZ_"
|
226 |
+
},
|
227 |
+
"execution_count": null,
|
228 |
+
"outputs": []
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "markdown",
|
232 |
+
"source": [
|
233 |
+
"## Hamiltonian systems"
|
234 |
+
],
|
235 |
+
"metadata": {
|
236 |
+
"id": "pvQgqhW2Wage"
|
237 |
+
}
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"source": [
|
242 |
+
"def get_trajectory(row):\n",
|
243 |
+
" # Ensure we're working with strings\n",
|
244 |
+
" chain = [str(row['Fact1']), str(row['Fact2'])]\n",
|
245 |
+
" embeddings = [get_bert_embedding(sentence) for sentence in chain]\n",
|
246 |
+
" return np.array(embeddings)\n",
|
247 |
+
"\n",
|
248 |
+
"def refined_hamiltonian_energy(chain):\n",
|
249 |
+
" emb1 = get_bert_embedding(chain['Fact1'])\n",
|
250 |
+
" emb2 = get_bert_embedding(chain['Fact2'])\n",
|
251 |
+
"\n",
|
252 |
+
" # Refined kinetic term: measure of change between facts\n",
|
253 |
+
" T = np.linalg.norm(emb2 - emb1)\n",
|
254 |
+
"\n",
|
255 |
+
" # Refined potential term: measure of relevance to facts\n",
|
256 |
+
" V = (np.linalg.norm(emb1) + np.linalg.norm(emb2)) / 2\n",
|
257 |
+
"\n",
|
258 |
+
" # Total \"Hamiltonian\" energy: balance between change and relevance\n",
|
259 |
+
" H = T - V\n",
|
260 |
+
"\n",
|
261 |
+
" return H, T, V\n",
|
262 |
+
"\n",
|
263 |
+
"\n",
|
264 |
+
"def compute_trajectory_energy(trajectory):\n",
|
265 |
+
" return refined_hamiltonian_energy({'Fact1': str(trajectory[0]), 'Fact2': str(trajectory[1])})[0]\n",
|
266 |
+
"\n",
|
267 |
+
"\n",
|
268 |
+
"# Compute trajectories for all chains\n",
|
269 |
+
"trajectories = df.apply(get_trajectory, axis=1)\n",
|
270 |
+
"\n",
|
271 |
+
"# Compute energies for trajectories\n",
|
272 |
+
"trajectory_energies = trajectories.apply(compute_trajectory_energy)\n"
|
273 |
+
],
|
274 |
+
"metadata": {
|
275 |
+
"id": "yveIXutUX3ub"
|
276 |
+
},
|
277 |
+
"execution_count": null,
|
278 |
+
"outputs": []
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"source": [
|
283 |
+
"# Use PCA to reduce dimensionality for visualization\n",
|
284 |
+
"pca = PCA(n_components=3)\n",
|
285 |
+
"all_points = np.vstack(trajectories.values)\n",
|
286 |
+
"pca_result = pca.fit_transform(all_points)\n",
|
287 |
+
"\n",
|
288 |
+
"trajectories_3d = trajectories.apply(lambda t: pca.transform(t))\n",
|
289 |
+
"\n",
|
290 |
+
"\n",
|
291 |
+
"# Analyze trajectory properties\n",
|
292 |
+
"def trajectory_length(traj):\n",
|
293 |
+
" return np.sum(np.sqrt(np.sum(np.diff(traj, axis=0)**2, axis=1)))\n",
|
294 |
+
"\n",
|
295 |
+
"def trajectory_smoothness(traj):\n",
|
296 |
+
" first = abs(np.diff(traj[0], axis=0))[0]\n",
|
297 |
+
" second = abs(np.diff(traj[1], axis=0))[0]\n",
|
298 |
+
" return (first + second)/2\n",
|
299 |
+
"\n",
|
300 |
+
"traj_properties = pd.DataFrame({\n",
|
301 |
+
" 'length': trajectories_3d.apply(trajectory_length),\n",
|
302 |
+
" 'smoothness': trajectories_3d.apply(trajectory_smoothness),\n",
|
303 |
+
" 'is_valid': df['is_valid']\n",
|
304 |
+
"})\n"
|
305 |
+
],
|
306 |
+
"metadata": {
|
307 |
+
"id": "qFF7_0TD6JRO"
|
308 |
+
},
|
309 |
+
"execution_count": null,
|
310 |
+
"outputs": []
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"source": [
|
315 |
+
"# Create the main figure and grid for subplots\n",
|
316 |
+
"fig, axs = plt.subplots(2, 2, figsize=(15, 12))\n",
|
317 |
+
"fig.suptitle(\"Refined Hamiltonian-Inspired Energy Analysis of Reasoning Chains\", fontsize=16)\n",
|
318 |
+
"\n",
|
319 |
+
"# Distribution of Hamiltonian Energy\n",
|
320 |
+
"sns.histplot(data=df, x='H_energy', ax=axs[0, 0], kde=True, color='blue', bins=50)\n",
|
321 |
+
"axs[0, 0].set_title(\"Distribution of Refined Hamiltonian Energy\")\n",
|
322 |
+
"axs[0, 0].set_xlabel(\"Hamiltonian Energy\")\n",
|
323 |
+
"axs[0, 0].set_ylabel(\"Count\")\n",
|
324 |
+
"\n",
|
325 |
+
"# Kinetic vs Potential Energy\n",
|
326 |
+
"scatter = axs[0, 1].scatter(df['T_energy'], df['V_energy'], c=df['H_energy'], cmap='viridis', s=5, alpha=0.6)\n",
|
327 |
+
"axs[0, 1].set_title(\"Refined Kinetic vs Potential Energy\")\n",
|
328 |
+
"axs[0, 1].set_xlabel(\"Kinetic Energy (T)\")\n",
|
329 |
+
"axs[0, 1].set_ylabel(\"Potential Energy (V)\")\n",
|
330 |
+
"plt.colorbar(scatter, ax=axs[0, 1], label=\"Hamiltonian Energy\")\n",
|
331 |
+
"\n",
|
332 |
+
"# Hamiltonian Energy: Valid vs Invalid Chains\n",
|
333 |
+
"valid_chains = df[df['is_valid']]\n",
|
334 |
+
"invalid_chains = df[~df['is_valid']]\n",
|
335 |
+
"sns.histplot(data=valid_chains, x='H_energy', ax=axs[1, 0], kde=True, color='green', label='Valid Chains', bins=50, alpha=0.6)\n",
|
336 |
+
"sns.histplot(data=invalid_chains, x='H_energy', ax=axs[1, 0], kde=True, color='red', label='Invalid Chains', bins=50, alpha=0.6)\n",
|
337 |
+
"axs[1, 0].set_title(\"Refined Hamiltonian Energy: Valid vs Invalid Chains\")\n",
|
338 |
+
"axs[1, 0].set_xlabel(\"Hamiltonian Energy\")\n",
|
339 |
+
"axs[1, 0].set_ylabel(\"Count\")\n",
|
340 |
+
"axs[1, 0].legend()\n",
|
341 |
+
"\n",
|
342 |
+
"# Distribution of Energy Conservation Scores\n",
|
343 |
+
"sns.histplot(data=df, x='energy_conservation', ax=axs[1, 1], kde=True, color='orange', bins=50)\n",
|
344 |
+
"axs[1, 1].set_title(\"Distribution of Refined Energy Conservation Scores\")\n",
|
345 |
+
"axs[1, 1].set_xlabel(\"Energy Conservation Score\")\n",
|
346 |
+
"axs[1, 1].set_ylabel(\"Count\")\n",
|
347 |
+
"\n",
|
348 |
+
"# Adjust layout and display\n",
|
349 |
+
"plt.tight_layout()\n",
|
350 |
+
"plt.subplots_adjust(top=0.93) # Adjust for main title\n",
|
351 |
+
"plt.savefig('refined_hamiltonian_analysis.png', dpi=300, bbox_inches='tight')\n",
|
352 |
+
"plt.show()"
|
353 |
+
],
|
354 |
+
"metadata": {
|
355 |
+
"id": "kqfbA7w3NuPM"
|
356 |
+
},
|
357 |
+
"execution_count": null,
|
358 |
+
"outputs": []
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"cell_type": "code",
|
362 |
+
"source": [
|
363 |
+
"# Calculate direction vectors\n",
|
364 |
+
"def calculate_direction(trajectory):\n",
|
365 |
+
" return trajectory[1] - trajectory[0]\n",
|
366 |
+
"\n",
|
367 |
+
"direction_vectors = np.array([calculate_direction(traj) for traj in trajectories_3d])\n",
|
368 |
+
"\n",
|
369 |
+
"# Calculate magnitude and angle of direction vectors\n",
|
370 |
+
"magnitudes = np.linalg.norm(direction_vectors, axis=1)\n",
|
371 |
+
"angles = np.arctan2(direction_vectors[:, 1], direction_vectors[:, 0])\n",
|
372 |
+
"\n",
|
373 |
+
"# Add these to the dataframe\n",
|
374 |
+
"df['trajectory_magnitude'] = magnitudes\n",
|
375 |
+
"df['trajectory_angle'] = angles\n",
|
376 |
+
"\n",
|
377 |
+
"# Visualize magnitude distribution\n",
|
378 |
+
"plt.figure(figsize=(12, 6))\n",
|
379 |
+
"sns.histplot(data=df, x='trajectory_magnitude', hue='is_valid', element='step', stat='density', common_norm=False)\n",
|
380 |
+
"plt.title('Distribution of Trajectory Magnitudes')\n",
|
381 |
+
"plt.xlabel('Magnitude')\n",
|
382 |
+
"plt.ylabel('Density')\n",
|
383 |
+
"plt.legend(title='Is Valid')\n",
|
384 |
+
"plt.tight_layout()\n",
|
385 |
+
"plt.tight_layout()\n",
|
386 |
+
"plt.savefig('trajectories_magntude_plot.png', dpi=300, bbox_inches='tight')\n",
|
387 |
+
"plt.show()"
|
388 |
+
],
|
389 |
+
"metadata": {
|
390 |
+
"id": "tYVhJJbPwNxo"
|
391 |
+
},
|
392 |
+
"execution_count": null,
|
393 |
+
"outputs": []
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"cell_type": "code",
|
397 |
+
"source": [
|
398 |
+
"plt.figure(figsize=(12, 6))\n",
|
399 |
+
"\n",
|
400 |
+
"# Define colors explicitly\n",
|
401 |
+
"colors = {'Valid': 'blue', 'Invalid': 'red'}\n",
|
402 |
+
"\n",
|
403 |
+
"# Create a new DataFrame with the data for plotting\n",
|
404 |
+
"plot_data = pd.DataFrame({\n",
|
405 |
+
" 'Hamiltonian Energy': df['H_energy'],\n",
|
406 |
+
" 'Validity': df['is_valid'].map({True: 'Valid', False: 'Invalid'})\n",
|
407 |
+
"})\n",
|
408 |
+
"\n",
|
409 |
+
"# Create the histogram plot with explicit colors\n",
|
410 |
+
"sns.histplot(data=plot_data, x='Hamiltonian Energy', hue='Validity',\n",
|
411 |
+
" element='step', stat='density', common_norm=False,\n",
|
412 |
+
" palette=colors)\n",
|
413 |
+
"\n",
|
414 |
+
"plt.title('Distribution of Refined Hamiltonian Energy', fontsize=16)\n",
|
415 |
+
"plt.xlabel('Hamiltonian Energy', fontsize=14)\n",
|
416 |
+
"plt.ylabel('Density', fontsize=14)\n",
|
417 |
+
"\n",
|
418 |
+
"# Adjust legend\n",
|
419 |
+
"plt.legend(title='Chain Validity', title_fontsize='13', fontsize='12')\n",
|
420 |
+
"\n",
|
421 |
+
"# Add vertical lines for mean energies\n",
|
422 |
+
"plt.axvline(x=-60.889, color='blue', linestyle='--', label='Mean Valid')\n",
|
423 |
+
"plt.axvline(x=-53.816, color='red', linestyle='--', label='Mean Invalid')\n",
|
424 |
+
"\n",
|
425 |
+
"# Add text annotations for mean energies\n",
|
426 |
+
"plt.text(-60.889, plt.gca().get_ylim()[1], 'Mean Valid',\n",
|
427 |
+
" rotation=90, va='top', ha='right', color='blue')\n",
|
428 |
+
"plt.text(-53.816, plt.gca().get_ylim()[1], 'Mean Invalid',\n",
|
429 |
+
" rotation=90, va='top', ha='left', color='red')\n",
|
430 |
+
"\n",
|
431 |
+
"plt.tight_layout()\n",
|
432 |
+
"plt.savefig('refined_hamiltonian_energy_distribution.png', dpi=300, bbox_inches='tight')\n",
|
433 |
+
"plt.show()"
|
434 |
+
],
|
435 |
+
"metadata": {
|
436 |
+
"id": "m1fHZ-NpMnHD"
|
437 |
+
},
|
438 |
+
"execution_count": null,
|
439 |
+
"outputs": []
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"source": [
|
444 |
+
"# Perform PCA to reduce to 2 dimensions\n",
|
445 |
+
"pca = PCA(n_components=2)\n",
|
446 |
+
"trajectories_2d = pca.fit_transform(np.vstack(trajectories))\n",
|
447 |
+
"\n",
|
448 |
+
"# Reshape the data back into trajectories\n",
|
449 |
+
"trajectories_2d = trajectories_2d.reshape(len(trajectories), -1, 2)\n",
|
450 |
+
"\n",
|
451 |
+
"# Create the plot\n",
|
452 |
+
"plt.figure(figsize=(12, 10))\n",
|
453 |
+
"plt.style.use('seaborn-whitegrid')\n",
|
454 |
+
"sns.set_context(\"paper\")\n",
|
455 |
+
"plt.rcParams['font.family'] = 'serif'\n",
|
456 |
+
"plt.rcParams['font.serif'] = ['Times New Roman'] + plt.rcParams['font.serif']\n",
|
457 |
+
"\n",
|
458 |
+
"# Plot trajectories\n",
|
459 |
+
"valid_trajectories = []\n",
|
460 |
+
"invalid_trajectories = []\n",
|
461 |
+
"for i, traj in enumerate(trajectories_2d[:100]): # Limit to 100 for clarity\n",
|
462 |
+
" if df.iloc[i]['is_valid']:\n",
|
463 |
+
" valid_trajectories.append(traj)\n",
|
464 |
+
" color = 'green'\n",
|
465 |
+
" else:\n",
|
466 |
+
" invalid_trajectories.append(traj)\n",
|
467 |
+
" color = 'red'\n",
|
468 |
+
" plt.plot(traj[:, 0], traj[:, 1], color=color, alpha=0.5)\n",
|
469 |
+
" plt.scatter(traj[0, 0], traj[0, 1], color=color, s=20, marker='o')\n",
|
470 |
+
" plt.scatter(traj[-1, 0], traj[-1, 1], color=color, s=20, marker='s')\n",
|
471 |
+
"\n",
|
472 |
+
"# Calculate the vector field based on the average direction of trajectories\n",
|
473 |
+
"grid_size = 20\n",
|
474 |
+
"x = np.linspace(trajectories_2d[:, :, 0].min(), trajectories_2d[:, :, 0].max(), grid_size)\n",
|
475 |
+
"y = np.linspace(trajectories_2d[:, :, 1].min(), trajectories_2d[:, :, 1].max(), grid_size)\n",
|
476 |
+
"X, Y = np.meshgrid(x, y)\n",
|
477 |
+
"\n",
|
478 |
+
"U = np.zeros_like(X)\n",
|
479 |
+
"V = np.zeros_like(Y)\n",
|
480 |
+
"\n",
|
481 |
+
"for i in range(grid_size):\n",
|
482 |
+
" for j in range(grid_size):\n",
|
483 |
+
" nearby_trajectories = [traj for traj in trajectories_2d if\n",
|
484 |
+
" (x[i]-0.5 < traj[:, 0]).any() and (traj[:, 0] < x[i]+0.5).any() and\n",
|
485 |
+
" (y[j]-0.5 < traj[:, 1]).any() and (traj[:, 1] < y[j]+0.5).any()]\n",
|
486 |
+
" if nearby_trajectories:\n",
|
487 |
+
" directions = np.diff(nearby_trajectories, axis=1)\n",
|
488 |
+
" avg_direction = np.mean(directions, axis=(0, 1))\n",
|
489 |
+
" U[j, i], V[j, i] = avg_direction\n",
|
490 |
+
"\n",
|
491 |
+
"# Normalize the vector field\n",
|
492 |
+
"magnitude = np.sqrt(U**2 + V**2)\n",
|
493 |
+
"U = U / np.where(magnitude > 0, magnitude, 1)\n",
|
494 |
+
"V = V / np.where(magnitude > 0, magnitude, 1)\n",
|
495 |
+
"\n",
|
496 |
+
"plt.streamplot(X, Y, U, V, density=1, color='gray', linewidth=0.5, arrowsize=0.5)\n",
|
497 |
+
"\n",
|
498 |
+
"# Find key points using KMeans clustering\n",
|
499 |
+
"n_clusters = 5 # Adjust this number based on how many key points you want\n",
|
500 |
+
"kmeans = KMeans(n_clusters=n_clusters)\n",
|
501 |
+
"flattened_trajectories = trajectories_2d.reshape(-1, 2)\n",
|
502 |
+
"kmeans.fit(flattened_trajectories)\n",
|
503 |
+
"key_points = kmeans.cluster_centers_\n",
|
504 |
+
"\n",
|
505 |
+
"# Plot key points\n",
|
506 |
+
"plt.scatter(key_points[:, 0], key_points[:, 1], color='blue', s=100, marker='*', zorder=5)\n",
|
507 |
+
"\n",
|
508 |
+
"# Add labels to key points\n",
|
509 |
+
"for i, point in enumerate(key_points):\n",
|
510 |
+
" plt.annotate(f'Key Point {i+1}', (point[0], point[1]), xytext=(5, 5),\n",
|
511 |
+
" textcoords='offset points', fontsize=8, color='blue')\n",
|
512 |
+
"\n",
|
513 |
+
"# Add labels and title\n",
|
514 |
+
"plt.xlabel('PCA 1')\n",
|
515 |
+
"plt.ylabel('PCA 2')\n",
|
516 |
+
"plt.title('2D Reasoning Trajectories with Phase Space Features and Key Points')\n",
|
517 |
+
"\n",
|
518 |
+
"# Add a legend\n",
|
519 |
+
"valid_line = plt.Line2D([], [], color='green', label='Valid Chains')\n",
|
520 |
+
"invalid_line = plt.Line2D([], [], color='red', label='Invalid Chains')\n",
|
521 |
+
"vector_field_line = plt.Line2D([], [], color='gray', label='Vector Field')\n",
|
522 |
+
"key_point_marker = plt.Line2D([], [], color='blue', marker='*', linestyle='None',\n",
|
523 |
+
" markersize=10, label='Key Points')\n",
|
524 |
+
"plt.legend(handles=[valid_line, invalid_line, vector_field_line, key_point_marker])\n",
|
525 |
+
"\n",
|
526 |
+
"# Show the plot\n",
|
527 |
+
"plt.tight_layout()\n",
|
528 |
+
"plt.savefig('2d_reasoning_trajectories_with_key_points.png', dpi=300, bbox_inches='tight')\n",
|
529 |
+
"plt.show()"
|
530 |
+
],
|
531 |
+
"metadata": {
|
532 |
+
"id": "m38JkWLcQKCc"
|
533 |
+
},
|
534 |
+
"execution_count": null,
|
535 |
+
"outputs": []
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"source": [
|
540 |
+
"fig = plt.figure(figsize=(10, 8))\n",
|
541 |
+
"ax = fig.add_subplot(111, projection='3d')\n",
|
542 |
+
"\n",
|
543 |
+
"for i, trajectory in enumerate(trajectories_3d[:100]): # Limit to first 100 for clarity\n",
|
544 |
+
" color = 'green' if df.iloc[i]['is_valid'] else 'red'\n",
|
545 |
+
" ax.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2], color=color, alpha=0.5)\n",
|
546 |
+
" ax.scatter(trajectory[0, 0], trajectory[0, 1], trajectory[0, 2], color=color, s=20)\n",
|
547 |
+
" ax.scatter(trajectory[-1, 0], trajectory[-1, 1], trajectory[-1, 2], color=color, s=20, marker='s')\n",
|
548 |
+
"\n",
|
549 |
+
"ax.set_xlabel('PCA 1')\n",
|
550 |
+
"ax.set_ylabel('PCA 2')\n",
|
551 |
+
"ax.set_zlabel('PCA 3')\n",
|
552 |
+
"ax.set_title('Reasoning Trajectories in 3D Embedding Space')\n",
|
553 |
+
"plt.tight_layout()\n",
|
554 |
+
"plt.show()"
|
555 |
+
],
|
556 |
+
"metadata": {
|
557 |
+
"id": "nVVADjWNNVy_"
|
558 |
+
},
|
559 |
+
"execution_count": null,
|
560 |
+
"outputs": []
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"cell_type": "code",
|
564 |
+
"source": [
|
565 |
+
"def compute_vector_field(trajectories, grid_size=10):\n",
|
566 |
+
" # Determine the bounds of the space\n",
|
567 |
+
" all_points = np.vstack(trajectories)\n",
|
568 |
+
" mins = np.min(all_points, axis=0)\n",
|
569 |
+
" maxs = np.max(all_points, axis=0)\n",
|
570 |
+
"\n",
|
571 |
+
" # Create a grid\n",
|
572 |
+
" x = np.linspace(mins[0], maxs[0], grid_size)\n",
|
573 |
+
" y = np.linspace(mins[1], maxs[1], grid_size)\n",
|
574 |
+
" z = np.linspace(mins[2], maxs[2], grid_size)\n",
|
575 |
+
" X, Y, Z = np.meshgrid(x, y, z)\n",
|
576 |
+
"\n",
|
577 |
+
" U = np.zeros((grid_size, grid_size, grid_size))\n",
|
578 |
+
" V = np.zeros((grid_size, grid_size, grid_size))\n",
|
579 |
+
" W = np.zeros((grid_size, grid_size, grid_size))\n",
|
580 |
+
"\n",
|
581 |
+
" # Compute average direction for each grid cell\n",
|
582 |
+
" for trajectory in trajectories:\n",
|
583 |
+
" directions = np.diff(trajectory, axis=0)\n",
|
584 |
+
" for direction, point in zip(directions, trajectory[:-1]):\n",
|
585 |
+
" i, j, k = np.floor((point - mins) / (maxs - mins) * (grid_size - 1)).astype(int)\n",
|
586 |
+
" U[i, j, k] += direction[0]\n",
|
587 |
+
" V[i, j, k] += direction[1]\n",
|
588 |
+
" W[i, j, k] += direction[2]\n",
|
589 |
+
"\n",
|
590 |
+
" # Normalize\n",
|
591 |
+
" magnitude = np.sqrt(U**2 + V**2 + W**2)\n",
|
592 |
+
" U /= np.where(magnitude > 0, magnitude, 1)\n",
|
593 |
+
" V /= np.where(magnitude > 0, magnitude, 1)\n",
|
594 |
+
" W /= np.where(magnitude > 0, magnitude, 1)\n",
|
595 |
+
"\n",
|
596 |
+
" return X, Y, Z, U, V, W\n",
|
597 |
+
"\n",
|
598 |
+
"# Set up the figure and 3D axis\n",
|
599 |
+
"fig = plt.figure(figsize=(12, 10))\n",
|
600 |
+
"ax = fig.add_subplot(111, projection='3d')\n",
|
601 |
+
"\n",
|
602 |
+
"# Plot trajectories\n",
|
603 |
+
"for i, trajectory in enumerate(trajectories_3d[:100]): # Limit to first 100 for clarity\n",
|
604 |
+
" color = 'green' if df.iloc[i]['is_valid'] else 'red'\n",
|
605 |
+
" ax.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2], color=color, alpha=0.5)\n",
|
606 |
+
" ax.scatter(trajectory[0, 0], trajectory[0, 1], trajectory[0, 2], color=color, s=20)\n",
|
607 |
+
" ax.scatter(trajectory[-1, 0], trajectory[-1, 1], trajectory[-1, 2], color=color, s=20, marker='s')\n",
|
608 |
+
"\n",
|
609 |
+
"# Compute and plot vector field\n",
|
610 |
+
"X, Y, Z, U, V, W = compute_vector_field(trajectories_3d[:100])\n",
|
611 |
+
"ax.quiver(X, Y, Z, U, V, W, length=0.5, normalize=True, color='blue', alpha=0.3)\n",
|
612 |
+
"\n",
|
613 |
+
"ax.set_xlabel('PCA 1')\n",
|
614 |
+
"ax.set_ylabel('PCA 2')\n",
|
615 |
+
"ax.set_zlabel('PCA 3')\n",
|
616 |
+
"ax.set_title('Reasoning Trajectories and Phase Space in 3D Embedding Space')\n",
|
617 |
+
"\n",
|
618 |
+
"plt.tight_layout()\n",
|
619 |
+
"plt.savefig('3d_phase_space_plot.png', dpi=300, bbox_inches='tight')\n",
|
620 |
+
"plt.show()"
|
621 |
+
],
|
622 |
+
"metadata": {
|
623 |
+
"id": "l0UmPM8xftuv"
|
624 |
+
},
|
625 |
+
"execution_count": null,
|
626 |
+
"outputs": []
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"cell_type": "code",
|
630 |
+
"source": [
|
631 |
+
"plt.figure(figsize=(10, 6))\n",
|
632 |
+
"\n",
|
633 |
+
"# Create the histogram plot\n",
|
634 |
+
"sns.histplot(data=df, x='energy_conservation', kde=True, bins=50, color='green')\n",
|
635 |
+
"\n",
|
636 |
+
"# Set the title and labels\n",
|
637 |
+
"plt.title(\"Distribution of Energy Conservation Scores\", fontsize=16)\n",
|
638 |
+
"plt.xlabel(\"Energy Conservation Score\", fontsize=12)\n",
|
639 |
+
"plt.ylabel(\"Frequency\", fontsize=12)\n",
|
640 |
+
"\n",
|
641 |
+
"# Adjust layout and display\n",
|
642 |
+
"plt.tight_layout()\n",
|
643 |
+
"plt.savefig('energy_conservation_distribution.png', dpi=300, bbox_inches='tight')\n",
|
644 |
+
"plt.show()"
|
645 |
+
],
|
646 |
+
"metadata": {
|
647 |
+
"id": "qca1p7PhOaU6"
|
648 |
+
},
|
649 |
+
"execution_count": null,
|
650 |
+
"outputs": []
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "code",
|
654 |
+
"source": [
|
655 |
+
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))\n",
|
656 |
+
"\n",
|
657 |
+
"sns.histplot(data=df, x='trajectory_magnitude', hue='is_valid', element='step', stat='density', common_norm=False, ax=ax1)\n",
|
658 |
+
"ax1.set_title('Distribution of Trajectory Magnitudes')\n",
|
659 |
+
"ax1.set_xlabel('Magnitude')\n",
|
660 |
+
"ax1.set_ylabel('Density')\n",
|
661 |
+
"\n",
|
662 |
+
"sns.histplot(data=df, x='trajectory_angle', hue='is_valid', element='step', stat='density', common_norm=False, ax=ax2)\n",
|
663 |
+
"ax2.set_title('Distribution of Trajectory Angles')\n",
|
664 |
+
"ax2.set_xlabel('Angle (radians)')\n",
|
665 |
+
"ax2.set_ylabel('Density')\n",
|
666 |
+
"\n",
|
667 |
+
"plt.tight_layout()\n",
|
668 |
+
"plt.savefig('magnitude_angle_distribution.png', dpi=300, bbox_inches='tight')\n",
|
669 |
+
"plt.close()"
|
670 |
+
],
|
671 |
+
"metadata": {
|
672 |
+
"id": "I8VrMb6MMsOc"
|
673 |
+
},
|
674 |
+
"execution_count": null,
|
675 |
+
"outputs": []
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"source": [
|
680 |
+
"# Additional analysis\n",
|
681 |
+
"print(f\"Average Energy Conservation Score: {df['energy_conservation'].mean():.4f}\")\n",
|
682 |
+
"print(f\"Correlation between Energy Conservation and Validity: {df['energy_conservation'].corr(df['is_valid']):.4f}\")\n",
|
683 |
+
"print(f\"Average Hamiltonian Energy for Valid Chains: {valid_chains['H_energy'].mean():.4f}\")\n",
|
684 |
+
"print(f\"Average Hamiltonian Energy for Invalid Chains: {invalid_chains['H_energy'].mean():.4f}\")\n",
|
685 |
+
"\n",
|
686 |
+
"# T-test for difference in Hamiltonian Energy\n",
|
687 |
+
"t_stat, p_value = stats.ttest_ind(valid_chains['H_energy'], invalid_chains['H_energy'])\n",
|
688 |
+
"print(f\"\\nT-test for difference in Hamiltonian Energy:\")\n",
|
689 |
+
"print(f\"t-statistic: {t_stat:.4f}\")\n",
|
690 |
+
"print(f\"p-value: {p_value:.4f}\")"
|
691 |
+
],
|
692 |
+
"metadata": {
|
693 |
+
"id": "FHmMSmNAI-qc"
|
694 |
+
},
|
695 |
+
"execution_count": null,
|
696 |
+
"outputs": []
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"cell_type": "markdown",
|
700 |
+
"source": [
|
701 |
+
"## Geometric analysis"
|
702 |
+
],
|
703 |
+
"metadata": {
|
704 |
+
"id": "1s_DosZEWVhy"
|
705 |
+
}
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"cell_type": "code",
|
709 |
+
"source": [
|
710 |
+
"fig = plt.figure(figsize=(10, 8))\n",
|
711 |
+
"ax = fig.add_subplot(111, projection='3d')\n",
|
712 |
+
"\n",
|
713 |
+
"for i, trajectory in enumerate(trajectories_3d[:100]): # Limit to first 100 for clarity\n",
|
714 |
+
" color = 'green' if df.iloc[i]['is_valid'] else 'red'\n",
|
715 |
+
" ax.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2], color=color, alpha=0.5)\n",
|
716 |
+
" ax.scatter(trajectory[0, 0], trajectory[0, 1], trajectory[0, 2], color=color, s=20)\n",
|
717 |
+
" ax.scatter(trajectory[-1, 0], trajectory[-1, 1], trajectory[-1, 2], color=color, s=20, marker='s')\n",
|
718 |
+
"\n",
|
719 |
+
"ax.set_xlabel('PCA 1')\n",
|
720 |
+
"ax.set_ylabel('PCA 2')\n",
|
721 |
+
"ax.set_zlabel('PCA 3')\n",
|
722 |
+
"ax.set_title('Reasoning Trajectories in 3D Embedding Space')\n",
|
723 |
+
"plt.tight_layout()\n",
|
724 |
+
"plt.savefig('3d_trajectories.png', dpi=300, bbox_inches='tight')\n",
|
725 |
+
"plt.close()\n",
|
726 |
+
"\n",
|
727 |
+
"# 2. Trajectory Energy by Chain Index\n",
|
728 |
+
"plt.figure(figsize=(10, 6))\n",
|
729 |
+
"sns.scatterplot(x=df.index, y=trajectory_energies, hue=df['is_valid'], palette={True: 'green', False: 'red'})\n",
|
730 |
+
"plt.title('Trajectory Energy by Chain Index')\n",
|
731 |
+
"plt.xlabel('Chain Index')\n",
|
732 |
+
"plt.ylabel('Energy')\n",
|
733 |
+
"plt.legend(title='Is Valid')\n",
|
734 |
+
"plt.tight_layout()\n",
|
735 |
+
"plt.savefig('trajectory_energy.png', dpi=300, bbox_inches='tight')\n",
|
736 |
+
"plt.close()"
|
737 |
+
],
|
738 |
+
"metadata": {
|
739 |
+
"id": "2Sz-nqGA9p8B"
|
740 |
+
},
|
741 |
+
"execution_count": null,
|
742 |
+
"outputs": []
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "code",
|
746 |
+
"source": [
|
747 |
+
"# Energy Plot\n",
|
748 |
+
"plt.figure(figsize=(12, 6))\n",
|
749 |
+
"sns.scatterplot(x=df.index, y=trajectory_energies, hue=df['is_valid'], palette={True: 'green', False: 'red'})\n",
|
750 |
+
"plt.title('Trajectory Energy by Chain Index')\n",
|
751 |
+
"plt.xlabel('Chain Index')\n",
|
752 |
+
"plt.ylabel('Energy')\n",
|
753 |
+
"plt.legend(title='Is Valid')\n",
|
754 |
+
"plt.tight_layout()\n",
|
755 |
+
"plt.show()"
|
756 |
+
],
|
757 |
+
"metadata": {
|
758 |
+
"id": "5rN0K7tM_68P"
|
759 |
+
},
|
760 |
+
"execution_count": null,
|
761 |
+
"outputs": []
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"cell_type": "code",
|
765 |
+
"source": [
|
766 |
+
"plt.figure(figsize=(12, 6))\n",
|
767 |
+
"\n",
|
768 |
+
"# Define colors explicitly\n",
|
769 |
+
"colors = {'Valid': 'green', 'Invalid': 'red'}\n",
|
770 |
+
"\n",
|
771 |
+
"# Create the histogram plot with explicit colors\n",
|
772 |
+
"sns.histplot(data=pd.DataFrame({'Energy': trajectory_energies, 'Is Valid': df['is_valid'].map({True: 'Valid', False: 'Invalid'})}),\n",
|
773 |
+
" x='Energy', hue='Is Valid', element='step', stat='density', common_norm=False,\n",
|
774 |
+
" palette=colors)\n",
|
775 |
+
"\n",
|
776 |
+
"plt.title('Distribution of Trajectory Energies', fontsize=16)\n",
|
777 |
+
"plt.xlabel('Energy', fontsize=14)\n",
|
778 |
+
"plt.ylabel('Density', fontsize=14)\n",
|
779 |
+
"\n",
|
780 |
+
"# Create a custom legend\n",
|
781 |
+
"handles = [plt.Rectangle((0,0),1,1, color=color) for color in colors.values()]\n",
|
782 |
+
"labels = list(colors.keys())\n",
|
783 |
+
"plt.legend(handles, labels, title='Trajectory Validity', title_fontsize='13', fontsize='12')\n",
|
784 |
+
"\n",
|
785 |
+
"plt.tight_layout()\n",
|
786 |
+
"plt.savefig('energy_distribution_plot.png', dpi=300, bbox_inches='tight')\n",
|
787 |
+
"plt.show()"
|
788 |
+
],
|
789 |
+
"metadata": {
|
790 |
+
"id": "iRG8GKRF__3a"
|
791 |
+
},
|
792 |
+
"execution_count": null,
|
793 |
+
"outputs": []
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"cell_type": "code",
|
797 |
+
"source": [
|
798 |
+
"# Distribution of Trajectory Magnitudes and Angles\n",
|
799 |
+
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))\n",
|
800 |
+
"\n",
|
801 |
+
"sns.histplot(data=df, x='trajectory_magnitude', hue='is_valid', element='step', stat='density', common_norm=False, ax=ax1)\n",
|
802 |
+
"ax1.set_title('Distribution of Trajectory Magnitudes')\n",
|
803 |
+
"ax1.set_xlabel('Magnitude')\n",
|
804 |
+
"ax1.set_ylabel('Density')\n",
|
805 |
+
"\n",
|
806 |
+
"sns.histplot(data=df, x='trajectory_angle', hue='is_valid', element='step', stat='density', common_norm=False, ax=ax2)\n",
|
807 |
+
"ax2.set_title('Distribution of Trajectory Angles')\n",
|
808 |
+
"ax2.set_xlabel('Angle (radians)')\n",
|
809 |
+
"ax2.set_ylabel('Density')\n",
|
810 |
+
"\n",
|
811 |
+
"plt.tight_layout()\n",
|
812 |
+
"plt.savefig('magnitude_angle_distribution.png', dpi=300, bbox_inches='tight')\n",
|
813 |
+
"plt.close()"
|
814 |
+
],
|
815 |
+
"metadata": {
|
816 |
+
"id": "yLJie7VYoas6"
|
817 |
+
},
|
818 |
+
"execution_count": null,
|
819 |
+
"outputs": []
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"cell_type": "code",
|
823 |
+
"source": [
|
824 |
+
"# Trajectory Magnitude vs Angle\n",
|
825 |
+
"plt.figure(figsize=(10, 8))\n",
|
826 |
+
"sns.scatterplot(data=df, x='trajectory_angle', y='trajectory_magnitude', hue='is_valid', alpha=0.6)\n",
|
827 |
+
"plt.title('Trajectory Magnitude vs Angle')\n",
|
828 |
+
"plt.xlabel('Angle (radians)')\n",
|
829 |
+
"plt.ylabel('Magnitude')\n",
|
830 |
+
"plt.legend(title='Is Valid')\n",
|
831 |
+
"plt.tight_layout()\n",
|
832 |
+
"plt.savefig('magnitude_vs_angle.png', dpi=300, bbox_inches='tight')\n",
|
833 |
+
"plt.close()\n",
|
834 |
+
"\n",
|
835 |
+
"# 6. Trajectory Properties Comparison\n",
|
836 |
+
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))\n",
|
837 |
+
"\n",
|
838 |
+
"sns.boxplot(x='is_valid', y='length', data=traj_properties, ax=ax1)\n",
|
839 |
+
"ax1.set_title('Trajectory Length')\n",
|
840 |
+
"ax1.set_xlabel('Is Valid')\n",
|
841 |
+
"ax1.set_ylabel('Length')\n",
|
842 |
+
"\n",
|
843 |
+
"sns.boxplot(x='is_valid', y='smoothness', data=traj_properties, ax=ax2)\n",
|
844 |
+
"ax2.set_title('Trajectory Smoothness')\n",
|
845 |
+
"ax2.set_xlabel('Is Valid')\n",
|
846 |
+
"ax2.set_ylabel('Smoothness')\n",
|
847 |
+
"\n",
|
848 |
+
"plt.tight_layout()\n",
|
849 |
+
"plt.savefig('trajectory_properties.png', dpi=300, bbox_inches='tight')\n",
|
850 |
+
"plt.close()"
|
851 |
+
],
|
852 |
+
"metadata": {
|
853 |
+
"id": "OOasgefio41H"
|
854 |
+
},
|
855 |
+
"execution_count": null,
|
856 |
+
"outputs": []
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"cell_type": "code",
|
860 |
+
"source": [
|
861 |
+
"plt.figure(figsize=(12, 8))\n",
|
862 |
+
"\n",
|
863 |
+
"# Define colors explicitly\n",
|
864 |
+
"colors = {'Valid': 'blue', 'Invalid': 'red'}\n",
|
865 |
+
"\n",
|
866 |
+
"# Prepare the data\n",
|
867 |
+
"plot_data = df.copy()\n",
|
868 |
+
"plot_data['Validity'] = df['is_valid'].map({True: 'Valid', False: 'Invalid'})\n",
|
869 |
+
"\n",
|
870 |
+
"# Create the scatter plot with explicit colors\n",
|
871 |
+
"sns.scatterplot(data=plot_data, x='trajectory_angle', y='trajectory_magnitude', hue='Validity',\n",
|
872 |
+
" palette=colors, alpha=0.6)\n",
|
873 |
+
"\n",
|
874 |
+
"plt.title('Trajectory Magnitude vs Angle', fontsize=16)\n",
|
875 |
+
"plt.xlabel('Angle (radians)', fontsize=14)\n",
|
876 |
+
"plt.ylabel('Magnitude', fontsize=14)\n",
|
877 |
+
"\n",
|
878 |
+
"# Create custom legend handles\n",
|
879 |
+
"handles = [plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10, alpha=0.6)\n",
|
880 |
+
" for color in colors.values()]\n",
|
881 |
+
"labels = list(colors.keys())\n",
|
882 |
+
"\n",
|
883 |
+
"# Add the legend with custom handles\n",
|
884 |
+
"plt.legend(handles, labels, title='Chain Validity', title_fontsize='13', fontsize='12')\n",
|
885 |
+
"\n",
|
886 |
+
"plt.tight_layout()\n",
|
887 |
+
"plt.savefig('refined_magnitude_vs_angle_plot.png', dpi=300, bbox_inches='tight')\n",
|
888 |
+
"plt.show()\n",
|
889 |
+
"\n",
|
890 |
+
"# Calculate and print statistical information\n",
|
891 |
+
"valid_data = df[df['is_valid']]\n",
|
892 |
+
"invalid_data = df[~df['is_valid']]\n",
|
893 |
+
"\n",
|
894 |
+
"print(\"Statistical Information:\")\n",
|
895 |
+
"print(f\"Correlation between Angle and Magnitude (overall): {df['trajectory_angle'].corr(df['trajectory_magnitude']):.3f}\")\n",
|
896 |
+
"print(f\"Correlation for Valid Chains: {valid_data['trajectory_angle'].corr(valid_data['trajectory_magnitude']):.3f}\")\n",
|
897 |
+
"print(f\"Correlation for Invalid Chains: {invalid_data['trajectory_angle'].corr(invalid_data['trajectory_magnitude']):.3f}\")\n",
|
898 |
+
"\n",
|
899 |
+
"# Perform t-tests\n",
|
900 |
+
"t_stat_angle, p_value_angle = stats.ttest_ind(valid_data['trajectory_angle'], invalid_data['trajectory_angle'])\n",
|
901 |
+
"t_stat_mag, p_value_mag = stats.ttest_ind(valid_data['trajectory_magnitude'], invalid_data['trajectory_magnitude'])\n",
|
902 |
+
"\n",
|
903 |
+
"print(\"\\nT-test for difference in Trajectory Angle:\")\n",
|
904 |
+
"print(f\"t-statistic: {t_stat_angle:.4f}\")\n",
|
905 |
+
"print(f\"p-value: {p_value_angle:.4f}\")\n",
|
906 |
+
"\n",
|
907 |
+
"print(\"\\nT-test for difference in Trajectory Magnitude:\")\n",
|
908 |
+
"print(f\"t-statistic: {t_stat_mag:.4f}\")\n",
|
909 |
+
"print(f\"p-value: {p_value_mag:.4f}\")\n",
|
910 |
+
"\n",
|
911 |
+
"# Calculate and print mean values\n",
|
912 |
+
"print(\"\\nMean Values:\")\n",
|
913 |
+
"print(f\"Mean Angle for Valid Chains: {valid_data['trajectory_angle'].mean():.3f}\")\n",
|
914 |
+
"print(f\"Mean Angle for Invalid Chains: {invalid_data['trajectory_angle'].mean():.3f}\")\n",
|
915 |
+
"print(f\"Mean Magnitude for Valid Chains: {valid_data['trajectory_magnitude'].mean():.3f}\")\n",
|
916 |
+
"print(f\"Mean Magnitude for Invalid Chains: {invalid_data['trajectory_magnitude'].mean():.3f}\")"
|
917 |
+
],
|
918 |
+
"metadata": {
|
919 |
+
"id": "6pBMYGiKBR7f"
|
920 |
+
},
|
921 |
+
"execution_count": null,
|
922 |
+
"outputs": []
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"cell_type": "code",
|
926 |
+
"source": [
|
927 |
+
"# Statistical tests\n",
|
928 |
+
"valid_mag = df[df['is_valid']]['trajectory_magnitude']\n",
|
929 |
+
"invalid_mag = df[~df['is_valid']]['trajectory_magnitude']\n",
|
930 |
+
"mag_ttest = ttest_ind(valid_mag, invalid_mag)\n",
|
931 |
+
"\n",
|
932 |
+
"valid_ang = df[df['is_valid']]['trajectory_angle']\n",
|
933 |
+
"invalid_ang = df[~df['is_valid']]['trajectory_angle']\n",
|
934 |
+
"ang_ttest = ttest_ind(valid_ang, invalid_ang)\n",
|
935 |
+
"\n",
|
936 |
+
"print(\"T-test for trajectory magnitude:\", mag_ttest)\n",
|
937 |
+
"print(\"T-test for trajectory angle:\", ang_ttest)\n",
|
938 |
+
"\n",
|
939 |
+
"# Correlation with energy\n",
|
940 |
+
"mag_energy_corr = df['trajectory_magnitude'].corr(df['H_energy'])\n",
|
941 |
+
"ang_energy_corr = df['trajectory_angle'].corr(df['H_energy'])\n",
|
942 |
+
"\n",
|
943 |
+
"print(\"Correlation between magnitude and H energy:\", mag_energy_corr)\n",
|
944 |
+
"print(\"Correlation between angle and H energy:\", ang_energy_corr)"
|
945 |
+
],
|
946 |
+
"metadata": {
|
947 |
+
"id": "i2ccr--MBXYa"
|
948 |
+
},
|
949 |
+
"execution_count": null,
|
950 |
+
"outputs": []
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"cell_type": "code",
|
954 |
+
"source": [
|
955 |
+
"def calculate_curvature(trajectory):\n",
|
956 |
+
" # Assuming trajectory has 3 points: start, middle, end\n",
|
957 |
+
"\n",
|
958 |
+
" a = np.linalg.norm(trajectory[0][1] - trajectory[0][0])\n",
|
959 |
+
" b = np.linalg.norm(trajectory[0][2] - trajectory[0][1])\n",
|
960 |
+
" c = np.linalg.norm(trajectory[0][2] - trajectory[0][0])\n",
|
961 |
+
"\n",
|
962 |
+
" s = (a + b + c) / 2\n",
|
963 |
+
" area = np.sqrt(s * (s-a) * (s-b) * (s-c))\n",
|
964 |
+
"\n",
|
965 |
+
" return 4 * area / (a * b * c)\n",
|
966 |
+
"\n",
|
967 |
+
"def calculate_rate_of_change(trajectory):\n",
|
968 |
+
" # Calculate the rate of change between each pair of consecutive points\n",
|
969 |
+
" changes = np.diff(trajectory, axis=0)\n",
|
970 |
+
" rates = np.linalg.norm(changes, axis=1)\n",
|
971 |
+
" return np.mean(rates)\n",
|
972 |
+
"\n",
|
973 |
+
"# Calculate curvature and rate of change\n",
|
974 |
+
"curvatures = []\n",
|
975 |
+
"rates_of_change = []\n",
|
976 |
+
"\n",
|
977 |
+
"for traj in trajectories_3d:\n",
|
978 |
+
" curvatures.append(calculate_curvature(traj))\n",
|
979 |
+
" rates_of_change.append(calculate_rate_of_change(traj))\n",
|
980 |
+
"\n",
|
981 |
+
"# Add these to the dataframe\n",
|
982 |
+
"df['curvature'] = curvatures\n",
|
983 |
+
"df['rate_of_change'] = rates_of_change\n",
|
984 |
+
"\n",
|
985 |
+
"\n",
|
986 |
+
"plt.figure(figsize=(12, 6))\n",
|
987 |
+
"\n",
|
988 |
+
"# Define colors explicitly\n",
|
989 |
+
"colors = {'Valid': 'blue', 'Invalid': 'red'}\n",
|
990 |
+
"\n",
|
991 |
+
"# Prepare the data\n",
|
992 |
+
"plot_data = pd.DataFrame({\n",
|
993 |
+
" 'Curvature': df['curvature'],\n",
|
994 |
+
" 'Validity': df['is_valid'].map({True: 'Valid', False: 'Invalid'})\n",
|
995 |
+
"})\n",
|
996 |
+
"\n",
|
997 |
+
"# Create the histogram plot with explicit colors\n",
|
998 |
+
"sns.histplot(data=plot_data, x='Curvature', hue='Validity',\n",
|
999 |
+
" element='step', stat='density', common_norm=False,\n",
|
1000 |
+
" palette=colors)\n",
|
1001 |
+
"\n",
|
1002 |
+
"plt.title('Distribution of Trajectory Curvatures', fontsize=16)\n",
|
1003 |
+
"plt.xlabel('Curvature', fontsize=14)\n",
|
1004 |
+
"plt.ylabel('Density', fontsize=14)\n",
|
1005 |
+
"\n",
|
1006 |
+
"# Adjust legend\n",
|
1007 |
+
"plt.legend(title='Chain Validity', title_fontsize='13', fontsize='12')\n",
|
1008 |
+
"\n",
|
1009 |
+
"# Calculate mean curvatures for valid and invalid chains\n",
|
1010 |
+
"mean_valid = df[df['is_valid']]['curvature'].mean()\n",
|
1011 |
+
"mean_invalid = df[~df['is_valid']]['curvature'].mean()\n",
|
1012 |
+
"\n",
|
1013 |
+
"# Add vertical lines for mean curvatures\n",
|
1014 |
+
"plt.axvline(x=mean_valid, color='blue', linestyle='--', label='Mean Valid')\n",
|
1015 |
+
"plt.axvline(x=mean_invalid, color='red', linestyle='--', label='Mean Invalid')\n",
|
1016 |
+
"\n",
|
1017 |
+
"# Add text annotations for mean curvatures\n",
|
1018 |
+
"plt.text(mean_valid, plt.gca().get_ylim()[1], f'Mean Valid: {mean_valid:.3f}',\n",
|
1019 |
+
" rotation=90, va='top', ha='right', color='blue')\n",
|
1020 |
+
"plt.text(mean_invalid, plt.gca().get_ylim()[1], f'Mean Invalid: {mean_invalid:.3f}',\n",
|
1021 |
+
" rotation=90, va='top', ha='left', color='red')\n",
|
1022 |
+
"\n",
|
1023 |
+
"plt.tight_layout()\n",
|
1024 |
+
"plt.savefig('refined_curvature_distribution.png', dpi=300, bbox_inches='tight')\n",
|
1025 |
+
"plt.show()\n",
|
1026 |
+
"\n",
|
1027 |
+
"# Calculate and print statistical information\n",
|
1028 |
+
"valid_curv = df[df['is_valid']]['curvature']\n",
|
1029 |
+
"invalid_curv = df[~df['is_valid']]['curvature']\n",
|
1030 |
+
"t_stat, p_value = stats.ttest_ind(valid_curv, invalid_curv)"
|
1031 |
+
],
|
1032 |
+
"metadata": {
|
1033 |
+
"id": "BlXQkEKjCrSK"
|
1034 |
+
},
|
1035 |
+
"execution_count": null,
|
1036 |
+
"outputs": []
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"cell_type": "code",
|
1040 |
+
"source": [
|
1041 |
+
"plt.figure(figsize=(12, 6))\n",
|
1042 |
+
"\n",
|
1043 |
+
"# Define colors explicitly\n",
|
1044 |
+
"colors = {'Valid': 'blue', 'Invalid': 'red'}\n",
|
1045 |
+
"\n",
|
1046 |
+
"# Prepare the data\n",
|
1047 |
+
"plot_data = pd.DataFrame({\n",
|
1048 |
+
" 'Rate of Change': df['rate_of_change'],\n",
|
1049 |
+
" 'Validity': df['is_valid'].map({True: 'Valid', False: 'Invalid'})\n",
|
1050 |
+
"})\n",
|
1051 |
+
"\n",
|
1052 |
+
"# Create the histogram plot with explicit colors\n",
|
1053 |
+
"sns.histplot(data=plot_data, x='Rate of Change', hue='Validity',\n",
|
1054 |
+
" element='step', stat='density', common_norm=False,\n",
|
1055 |
+
" palette=colors)\n",
|
1056 |
+
"\n",
|
1057 |
+
"plt.title('Distribution of Trajectory Rates of Change', fontsize=16)\n",
|
1058 |
+
"plt.xlabel('Rate of Change', fontsize=14)\n",
|
1059 |
+
"plt.ylabel('Density', fontsize=14)\n",
|
1060 |
+
"\n",
|
1061 |
+
"# Create custom legend handles\n",
|
1062 |
+
"handles = [plt.Rectangle((0,0),1,1, color=colors[label]) for label in colors]\n",
|
1063 |
+
"labels = list(colors.keys())\n",
|
1064 |
+
"\n",
|
1065 |
+
"# Add the legend with custom handles\n",
|
1066 |
+
"plt.legend(handles, labels, title='Chain Validity', title_fontsize='13', fontsize='12')\n",
|
1067 |
+
"\n",
|
1068 |
+
"plt.tight_layout()\n",
|
1069 |
+
"plt.savefig('simplified_rate_of_change_distribution.png', dpi=300, bbox_inches='tight')\n",
|
1070 |
+
"plt.show()\n",
|
1071 |
+
"\n",
|
1072 |
+
"# Calculate and print statistical information\n",
|
1073 |
+
"valid_roc = df[df['is_valid']]['rate_of_change']\n",
|
1074 |
+
"invalid_roc = df[~df['is_valid']]['rate_of_change']\n",
|
1075 |
+
"t_stat, p_value = stats.ttest_ind(valid_roc, invalid_roc)\n",
|
1076 |
+
"\n",
|
1077 |
+
"mean_valid = valid_roc.mean()\n",
|
1078 |
+
"mean_invalid = invalid_roc.mean()\n",
|
1079 |
+
"\n",
|
1080 |
+
"print(\"Distribution of Trajectory Rates of Change\")\n",
|
1081 |
+
"print(f\"Average Rate of Change for Valid Chains: {mean_valid:.3f}\")\n",
|
1082 |
+
"print(f\"Average Rate of Change for Invalid Chains: {mean_invalid:.3f}\")\n",
|
1083 |
+
"print(f\"Correlation between Rate of Change and Validity: {df['rate_of_change'].corr(df['is_valid']):.3f}\")\n",
|
1084 |
+
"print(\"\\nT-test for difference in Rate of Change:\")\n",
|
1085 |
+
"print(f\"t-statistic: {t_stat:.4f}\")\n",
|
1086 |
+
"print(f\"p-value: {p_value:.4f}\")"
|
1087 |
+
],
|
1088 |
+
"metadata": {
|
1089 |
+
"id": "T7GzkWJzCwJe"
|
1090 |
+
},
|
1091 |
+
"execution_count": null,
|
1092 |
+
"outputs": []
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"cell_type": "code",
|
1096 |
+
"source": [
|
1097 |
+
"# Statistical tests\n",
|
1098 |
+
"df['curvature'] = df['curvature'].fillna(0)\n",
|
1099 |
+
"df['rate_of_change'] = df['rate_of_change'].astype(float)\n",
|
1100 |
+
"valid_curv = df[df['is_valid']]['curvature']\n",
|
1101 |
+
"invalid_curv = df[~df['is_valid']]['curvature']\n",
|
1102 |
+
"curv_ttest = ttest_ind(valid_curv, invalid_curv)\n",
|
1103 |
+
"\n",
|
1104 |
+
"valid_roc = df[df['is_valid']]['rate_of_change']\n",
|
1105 |
+
"invalid_roc = df[~df['is_valid']]['rate_of_change']\n",
|
1106 |
+
"roc_ttest = ttest_ind(valid_roc, invalid_roc)\n",
|
1107 |
+
"\n",
|
1108 |
+
"print(\"T-test for trajectory curvature:\", curv_ttest)\n",
|
1109 |
+
"print(\"T-test for trajectory rate of change:\", roc_ttest)\n",
|
1110 |
+
"\n",
|
1111 |
+
"# Correlation with energy\n",
|
1112 |
+
"curv_energy_corr = df['curvature'].corr(df['H_energy'])\n",
|
1113 |
+
"roc_energy_corr = df['rate_of_change'].corr(df['H_energy'])\n",
|
1114 |
+
"\n",
|
1115 |
+
"print(\"Correlation between curvature and energy:\", curv_energy_corr)\n",
|
1116 |
+
"print(\"Correlation between rate of change and energy:\", roc_energy_corr)"
|
1117 |
+
],
|
1118 |
+
"metadata": {
|
1119 |
+
"id": "0PabrOYpC7dK"
|
1120 |
+
},
|
1121 |
+
"execution_count": null,
|
1122 |
+
"outputs": []
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"cell_type": "code",
|
1126 |
+
"source": [
|
1127 |
+
"# Frenet's framework\n",
|
1128 |
+
"def reduce_dimensionality(trajectories, n_components=3):\n",
|
1129 |
+
" \"\"\"Reduce dimensionality of trajectories using PCA\"\"\"\n",
|
1130 |
+
" flattened = np.vstack(trajectories)\n",
|
1131 |
+
" pca = PCA(n_components=n_components)\n",
|
1132 |
+
" reduced = pca.fit_transform(flattened)\n",
|
1133 |
+
" return reduced.reshape(len(trajectories), -1, n_components), pca\n",
|
1134 |
+
"\n",
|
1135 |
+
"def frenet_serret_frame(trajectory):\n",
|
1136 |
+
" \"\"\"Compute Frenet-Serret frame for a trajectory\"\"\"\n",
|
1137 |
+
" # Compute tangent vectors\n",
|
1138 |
+
" T = np.diff(trajectory, axis=0)\n",
|
1139 |
+
" T_norm = np.linalg.norm(T, axis=1, keepdims=True)\n",
|
1140 |
+
" T = np.divide(T, T_norm, where=T_norm!=0)\n",
|
1141 |
+
"\n",
|
1142 |
+
" # Compute normal vectors\n",
|
1143 |
+
" N = np.diff(T, axis=0)\n",
|
1144 |
+
" N_norm = np.linalg.norm(N, axis=1, keepdims=True)\n",
|
1145 |
+
" N = np.divide(N, N_norm, where=N_norm!=0)\n",
|
1146 |
+
"\n",
|
1147 |
+
" # Compute binormal vectors\n",
|
1148 |
+
" B = np.cross(T[:-1], N)\n",
|
1149 |
+
"\n",
|
1150 |
+
" return T[:-1], N, B\n",
|
1151 |
+
"\n",
|
1152 |
+
"def compute_curvature_torsion(T, N, B):\n",
|
1153 |
+
" \"\"\"Compute curvature and torsion from Frenet-Serret frame\"\"\"\n",
|
1154 |
+
" dT = np.diff(T, axis=0)\n",
|
1155 |
+
" curvature = np.linalg.norm(dT, axis=1)\n",
|
1156 |
+
"\n",
|
1157 |
+
" # Compute torsion\n",
|
1158 |
+
" dB = np.diff(B, axis=0)\n",
|
1159 |
+
" torsion = np.sum(dB * N[1:], axis=1)\n",
|
1160 |
+
"\n",
|
1161 |
+
" return np.mean(curvature), np.mean(torsion)\n",
|
1162 |
+
"\n",
|
1163 |
+
"# Reduce dimensionality of trajectories\n",
|
1164 |
+
"reduced_trajectories, pca = reduce_dimensionality(trajectories)\n",
|
1165 |
+
"\n",
|
1166 |
+
"# Compute Frenet-Serret frames and curvature/torsion\n",
|
1167 |
+
"curvatures = []\n",
|
1168 |
+
"torsions = []\n",
|
1169 |
+
"for i, traj in enumerate(reduced_trajectories):\n",
|
1170 |
+
" try:\n",
|
1171 |
+
" T, N, B = frenet_serret_frame(traj)\n",
|
1172 |
+
" curvature, torsion = compute_curvature_torsion(T, N, B)\n",
|
1173 |
+
" curvatures.append(curvature)\n",
|
1174 |
+
" torsions.append(torsion)\n",
|
1175 |
+
" except Exception as e:\n",
|
1176 |
+
" print(f\"Error processing trajectory {i}: {str(e)}\")\n",
|
1177 |
+
" print(f\"Trajectory shape: {traj.shape}\")\n",
|
1178 |
+
" curvatures.append(np.nan)\n",
|
1179 |
+
" torsions.append(np.nan)\n",
|
1180 |
+
"\n",
|
1181 |
+
"df['curvature'] = curvatures\n",
|
1182 |
+
"df['torsion'] = torsions\n",
|
1183 |
+
"\n",
|
1184 |
+
"# Remove any NaN values\n",
|
1185 |
+
"df = df.dropna(subset=['curvature', 'torsion'])\n"
|
1186 |
+
],
|
1187 |
+
"metadata": {
|
1188 |
+
"id": "hgpHHxRz438n"
|
1189 |
+
},
|
1190 |
+
"execution_count": null,
|
1191 |
+
"outputs": []
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"cell_type": "code",
|
1195 |
+
"source": [
|
1196 |
+
"# Analyze the principal components\n",
|
1197 |
+
"explained_variance_ratio = pca.explained_variance_ratio_\n",
|
1198 |
+
"cumulative_variance_ratio = np.cumsum(explained_variance_ratio)\n",
|
1199 |
+
"\n",
|
1200 |
+
"plt.figure(figsize=(10, 6))\n",
|
1201 |
+
"plt.plot(range(1, len(explained_variance_ratio) + 1), cumulative_variance_ratio, 'bo-')\n",
|
1202 |
+
"plt.xlabel('Number of Components', fontsize=14)\n",
|
1203 |
+
"plt.ylabel('Cumulative Explained Variance Ratio', fontsize=14)\n",
|
1204 |
+
"plt.title('Explained Variance Ratio by Principal Components', fontsize=16)\n",
|
1205 |
+
"plt.savefig('pca_explained_variance.png', dpi=300, bbox_inches='tight')\n",
|
1206 |
+
"plt.show()\n",
|
1207 |
+
"\n",
|
1208 |
+
"print(f\"Explained variance ratio of first 3 components: {explained_variance_ratio[:3]}\")\n",
|
1209 |
+
"print(f\"Cumulative explained variance ratio of first 3 components: {cumulative_variance_ratio[2]:.4f}\")"
|
1210 |
+
],
|
1211 |
+
"metadata": {
|
1212 |
+
"id": "UHASmPhm5dsa"
|
1213 |
+
},
|
1214 |
+
"execution_count": null,
|
1215 |
+
"outputs": []
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "code",
|
1219 |
+
"source": [
|
1220 |
+
"# Compute and visualize Hamiltonian along trajectories\n",
|
1221 |
+
"\n",
|
1222 |
+
"def hamiltonian(q, p, q_goal):\n",
|
1223 |
+
" \"\"\"Hamiltonian function\"\"\"\n",
|
1224 |
+
" T = 0.5 * np.dot(p, p) # Kinetic energy\n",
|
1225 |
+
" V = sophisticated_potential(q, q_goal) # Potential energy\n",
|
1226 |
+
" return T + V\n",
|
1227 |
+
"\n",
|
1228 |
+
"def sophisticated_potential(q, q_goal):\n",
|
1229 |
+
" \"\"\"A more sophisticated potential energy function\"\"\"\n",
|
1230 |
+
" similarity = np.dot(q, q_goal) / (np.linalg.norm(q) * np.linalg.norm(q_goal))\n",
|
1231 |
+
" complexity = np.linalg.norm(q) # Assume more complex states have higher norm\n",
|
1232 |
+
" return -similarity + 0.1 * complexity # Balance between relevance and complexity\n",
|
1233 |
+
"\n",
|
1234 |
+
"# Compute and visualize Hamiltonian along trajectories\n",
|
1235 |
+
"hamiltonians = []\n",
|
1236 |
+
"q_goal = np.mean([traj[-1] for traj in trajectories], axis=0) # Assuming the goal is the average final state\n",
|
1237 |
+
"\n",
|
1238 |
+
"for traj in trajectories:\n",
|
1239 |
+
" H = []\n",
|
1240 |
+
" for i in range(len(traj)):\n",
|
1241 |
+
" q = traj[i]\n",
|
1242 |
+
" p = traj[i] - traj[i-1] if i > 0 else np.zeros_like(q) # Estimate momentum as the difference between states\n",
|
1243 |
+
" H.append(hamiltonian(q, p, q_goal))\n",
|
1244 |
+
" hamiltonians.append(H)\n",
|
1245 |
+
"\n",
|
1246 |
+
"plt.figure(figsize=(12, 6))\n",
|
1247 |
+
"for i, H in enumerate(hamiltonians[:20]): # Plot first 20 for clarity\n",
|
1248 |
+
" plt.plot(H, label=f'Trajectory {i+1}')\n",
|
1249 |
+
"plt.title('Hamiltonian Evolution Along Reasoning Trajectories', fontsize=16)\n",
|
1250 |
+
"plt.xlabel('Time Step', fontsize=16)\n",
|
1251 |
+
"plt.ylabel('Hamiltonian',fontsize=16)\n",
|
1252 |
+
"plt.legend()\n",
|
1253 |
+
"plt.savefig('hamiltonian_evolution_plot.png', dpi=300, bbox_inches='tight')\n",
|
1254 |
+
"plt.show()\n",
|
1255 |
+
"\n",
|
1256 |
+
"# Statistical analysis\n",
|
1257 |
+
"valid_curvature = df[df['is_valid']]['curvature']\n",
|
1258 |
+
"invalid_curvature = df[~df['is_valid']]['curvature']\n",
|
1259 |
+
"t_stat, p_value = stats.ttest_ind(valid_curvature, invalid_curvature)\n",
|
1260 |
+
"\n",
|
1261 |
+
"print(f\"T-test for curvature: t-statistic = {t_stat}, p-value = {p_value}\")\n",
|
1262 |
+
"\n",
|
1263 |
+
"# Correlation analysis\n",
|
1264 |
+
"correlation = df['curvature'].corr(df['torsion'])\n",
|
1265 |
+
"print(f\"Correlation between curvature and torsion: {correlation}\")\n",
|
1266 |
+
"\n"
|
1267 |
+
],
|
1268 |
+
"metadata": {
|
1269 |
+
"id": "v0V1WiVN6F6g"
|
1270 |
+
},
|
1271 |
+
"execution_count": null,
|
1272 |
+
"outputs": []
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"cell_type": "code",
|
1276 |
+
"source": [
|
1277 |
+
"# 3D plot of trajectories\n",
|
1278 |
+
"fig = plt.figure(figsize=(12,12))\n",
|
1279 |
+
"ax = fig.add_subplot(111, projection='3d')\n",
|
1280 |
+
"\n",
|
1281 |
+
"for i, traj in enumerate(trajectories_3d[:20]): # Plot first 20 for clarity\n",
|
1282 |
+
" color = 'green' if df.iloc[i]['is_valid'] else 'red'\n",
|
1283 |
+
" ax.plot(traj[:, 0], traj[:, 1], traj[:, 2], color=color, alpha=0.6)\n",
|
1284 |
+
"\n",
|
1285 |
+
"ax.set_xlabel('PCA 1', fontsize=14)\n",
|
1286 |
+
"ax.set_ylabel('PCA 2', fontsize=14)\n",
|
1287 |
+
"ax.set_zlabel('PCA 3', fontsize=14)\n",
|
1288 |
+
"ax.set_title('Reasoning Trajectories in PCA Space', fontsize=16)\n",
|
1289 |
+
"# Add legend\n",
|
1290 |
+
"ax.legend([valid_handle, invalid_handle], ['Valid', 'Invalid'], loc='upper right')\n",
|
1291 |
+
"plt.savefig('pca_trajectories_plot.png', dpi=300, bbox_inches='tight')\n",
|
1292 |
+
"plt.show()"
|
1293 |
+
],
|
1294 |
+
"metadata": {
|
1295 |
+
"id": "7BuXJCesA-2u"
|
1296 |
+
},
|
1297 |
+
"execution_count": null,
|
1298 |
+
"outputs": []
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"cell_type": "code",
|
1302 |
+
"source": [
|
1303 |
+
"# Statistical Analysis\n",
|
1304 |
+
"\n",
|
1305 |
+
"pca_means = np.array([traj.mean(axis=0) for traj in trajectories_3d])\n",
|
1306 |
+
"X = pd.DataFrame(pca_means, columns=['PCA1', 'PCA2', 'PCA3'])\n",
|
1307 |
+
"y = pd.Series(df['is_valid'].values, name='is_valid')\n",
|
1308 |
+
"\n",
|
1309 |
+
"# Ensure 'is_valid' is boolean\n",
|
1310 |
+
"y = y.astype(bool)\n",
|
1311 |
+
"\n",
|
1312 |
+
"# Combine X and y into a single DataFrame\n",
|
1313 |
+
"data = pd.concat([X, y], axis=1)\n",
|
1314 |
+
"\n",
|
1315 |
+
"# 1. MANOVA test\n",
|
1316 |
+
"manova = MANOVA.from_formula('PCA1 + PCA2 + PCA3 ~ is_valid', data=data)\n",
|
1317 |
+
"print(\"MANOVA test results:\")\n",
|
1318 |
+
"print(manova.mv_test())\n",
|
1319 |
+
"\n",
|
1320 |
+
"# 2. T-tests for each PCA dimension\n",
|
1321 |
+
"for i in range(3):\n",
|
1322 |
+
" t_stat, p_value = stats.ttest_ind(X[f'PCA{i+1}'][y], X[f'PCA{i+1}'][~y])\n",
|
1323 |
+
" print(f\"T-test for PCA{i+1}: t-statistic = {t_stat:.4f}, p-value = {p_value:.4f}\")\n",
|
1324 |
+
"\n",
|
1325 |
+
"# 3. Logistic Regression\n",
|
1326 |
+
"log_reg = LogisticRegression()\n",
|
1327 |
+
"log_reg.fit(X, y)\n",
|
1328 |
+
"y_pred = log_reg.predict(X)\n",
|
1329 |
+
"accuracy = accuracy_score(y, y_pred)\n",
|
1330 |
+
"print(f\"Logistic Regression Accuracy: {accuracy:.4f}\")\n",
|
1331 |
+
"\n",
|
1332 |
+
"# 4. Effect sizes (Cohen's d) for each PCA dimension\n",
|
1333 |
+
"for i in range(3):\n",
|
1334 |
+
" cohens_d = (X[f'PCA{i+1}'][y].mean() - X[f'PCA{i+1}'][~y].mean()) / np.sqrt((X[f'PCA{i+1}'][y].var() + X[f'PCA{i+1}'][~y].var()) / 2)\n",
|
1335 |
+
" print(f\"Cohen's d for PCA{i+1}: {cohens_d:.4f}\")\n",
|
1336 |
+
"\n",
|
1337 |
+
"# 5. Trajectory length comparison\n",
|
1338 |
+
"trajectory_lengths = np.array([np.sum(np.sqrt(np.sum(np.diff(traj, axis=0)**2, axis=1))) for traj in trajectories_pca])\n",
|
1339 |
+
"t_stat, p_value = stats.ttest_ind(trajectory_lengths[y], trajectory_lengths[~y])\n",
|
1340 |
+
"print(f\"T-test for trajectory lengths: t-statistic = {t_stat:.4f}, p-value = {p_value:.4f}\")"
|
1341 |
+
],
|
1342 |
+
"metadata": {
|
1343 |
+
"id": "rqPocLPzDFiM"
|
1344 |
+
},
|
1345 |
+
"execution_count": null,
|
1346 |
+
"outputs": []
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"cell_type": "code",
|
1350 |
+
"source": [
|
1351 |
+
"# Correlation between trajectory complexity and validity\n",
|
1352 |
+
"# Analyze trajectory complexity\n",
|
1353 |
+
"def trajectory_complexity(traj):\n",
|
1354 |
+
" return np.sum(np.linalg.norm(np.diff(traj, axis=0), axis=1))\n",
|
1355 |
+
"\n",
|
1356 |
+
"complexities = [trajectory_complexity(traj) for traj in reduced_trajectories]\n",
|
1357 |
+
"df['complexity'] = complexities\n",
|
1358 |
+
"complexity_correlation = stats.pointbiserialr(df['is_valid'], df['complexity'])\n",
|
1359 |
+
"print(f\"Correlation between trajectory complexity and validity: r = {complexity_correlation.correlation:.4f}, p = {complexity_correlation.pvalue:.4f}\")"
|
1360 |
+
],
|
1361 |
+
"metadata": {
|
1362 |
+
"id": "csICTST5BcS5"
|
1363 |
+
},
|
1364 |
+
"execution_count": null,
|
1365 |
+
"outputs": []
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"cell_type": "markdown",
|
1369 |
+
"source": [
|
1370 |
+
"## Canonical transformations"
|
1371 |
+
],
|
1372 |
+
"metadata": {
|
1373 |
+
"id": "c0kKU3xdVpMf"
|
1374 |
+
}
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"cell_type": "code",
|
1378 |
+
"source": [
|
1379 |
+
"def hamiltonian(state, t, k):\n",
|
1380 |
+
" \"\"\"Simple harmonic oscillator Hamiltonian\"\"\"\n",
|
1381 |
+
" q, p = state\n",
|
1382 |
+
" return p**2 / 2 + k * q**2 / 2\n",
|
1383 |
+
"\n",
|
1384 |
+
"def hamilton_equations(state, t, k):\n",
|
1385 |
+
" \"\"\"Hamilton's equations for simple harmonic oscillator\"\"\"\n",
|
1386 |
+
" q, p = state\n",
|
1387 |
+
" dqdt = p\n",
|
1388 |
+
" dpdt = -k * q\n",
|
1389 |
+
" return [dqdt, dpdt]\n",
|
1390 |
+
"\n",
|
1391 |
+
"def canonical_transform_to_action_angle(q, p, k):\n",
|
1392 |
+
" \"\"\"Transform from (q,p) to action-angle variables (I, theta)\"\"\"\n",
|
1393 |
+
" I = (p**2 + k * q**2) / (2 * k)\n",
|
1394 |
+
" theta = np.arctan2(np.sqrt(k) * q, p)\n",
|
1395 |
+
" return I, theta\n",
|
1396 |
+
"\n",
|
1397 |
+
"def inverse_canonical_transform(I, theta, k):\n",
|
1398 |
+
" \"\"\"Transform from action-angle variables (I, theta) back to (q,p)\"\"\"\n",
|
1399 |
+
" q = np.sqrt(2 * I / k) * np.sin(theta)\n",
|
1400 |
+
" p = np.sqrt(2 * I * k) * np.cos(theta)\n",
|
1401 |
+
" return q, p\n",
|
1402 |
+
"\n",
|
1403 |
+
"# Parameters\n",
|
1404 |
+
"k = 1.0 # Spring constant\n",
|
1405 |
+
"t = np.linspace(0, 10, 100)\n",
|
1406 |
+
"\n",
|
1407 |
+
"# Apply canonical transformation to our trajectories\n",
|
1408 |
+
"action_angle_trajectories = []\n",
|
1409 |
+
"for traj in trajectories_pca:\n",
|
1410 |
+
" q, p = traj[:, 0], traj[:, 1] # Assuming first two PCs represent position and momentum\n",
|
1411 |
+
" I, theta = canonical_transform_to_action_angle(q, p, k)\n",
|
1412 |
+
" action_angle_trajectories.append(np.column_stack((I, theta)))\n",
|
1413 |
+
"\n",
|
1414 |
+
"\n",
|
1415 |
+
"# Analysis\n",
|
1416 |
+
"action_means_valid = [np.mean(traj[:, 0]) for traj, valid in zip(action_angle_trajectories, df['is_valid'].tolist()) if valid]\n",
|
1417 |
+
"action_means_nonvalid = [np.mean(traj[:, 0]) for traj, valid in zip(action_angle_trajectories, df['is_valid'].tolist()) if not valid]\n",
|
1418 |
+
"angle_ranges_valid = [np.ptp(traj[:, 1]) for traj, valid in zip(action_angle_trajectories, df['is_valid'].tolist()) if valid]\n",
|
1419 |
+
"angle_ranges_nonvalid = [np.ptp(traj[:, 1]) for traj, valid in zip(action_angle_trajectories, df['is_valid'].tolist()) if not valid]\n",
|
1420 |
+
"\n",
|
1421 |
+
"print(f\"Mean action for valid chains: {np.mean(action_means_valid):.4f}\")\n",
|
1422 |
+
"print(f\"Mean action for non-valid chains: {np.mean(action_means_nonvalid):.4f}\")\n",
|
1423 |
+
"print(f\"Mean angle range for valid chains: {np.mean(angle_ranges_valid):.4f}\")\n",
|
1424 |
+
"print(f\"Mean angle range for non-valid chains: {np.mean(angle_ranges_nonvalid):.4f}\")\n",
|
1425 |
+
"\n",
|
1426 |
+
"# Statistical tests\n",
|
1427 |
+
"from scipy import stats\n",
|
1428 |
+
"\n",
|
1429 |
+
"t_stat, p_value = stats.ttest_ind(action_means_valid, action_means_nonvalid)\n",
|
1430 |
+
"print(f\"T-test for action means: t-statistic = {t_stat:.4f}, p-value = {p_value:.4f}\")\n",
|
1431 |
+
"\n",
|
1432 |
+
"t_stat, p_value = stats.ttest_ind(angle_ranges_valid, angle_ranges_nonvalid)\n",
|
1433 |
+
"print(f\"T-test for angle ranges: t-statistic = {t_stat:.4f}, p-value = {p_value:.4f}\")\n",
|
1434 |
+
"\n",
|
1435 |
+
"# Classify trajectories based on action and angle properties\n",
|
1436 |
+
"def classify_trajectory(action, angle_range, valid):\n",
|
1437 |
+
" high_action = np.mean(action_means_valid if valid else action_means_nonvalid) + np.std(action_means_valid if valid else action_means_nonvalid)\n",
|
1438 |
+
" low_action = np.mean(action_means_valid if valid else action_means_nonvalid) - np.std(action_means_valid if valid else action_means_nonvalid)\n",
|
1439 |
+
" high_angle_range = np.mean(angle_ranges_valid if valid else angle_ranges_nonvalid) + np.std(angle_ranges_valid if valid else angle_ranges_nonvalid)\n",
|
1440 |
+
"\n",
|
1441 |
+
" if action > high_action and angle_range > high_angle_range:\n",
|
1442 |
+
" return \"High energy, complex reasoning\"\n",
|
1443 |
+
" elif action < low_action and angle_range > high_angle_range:\n",
|
1444 |
+
" return \"Low energy, exploratory reasoning\"\n",
|
1445 |
+
" elif action > high_action and angle_range <= high_angle_range:\n",
|
1446 |
+
" return \"High energy, focused reasoning\"\n",
|
1447 |
+
" elif action < low_action and angle_range <= high_angle_range:\n",
|
1448 |
+
" return \"Low energy, simple reasoning\"\n",
|
1449 |
+
" else:\n",
|
1450 |
+
" return \"Moderate reasoning\""
|
1451 |
+
],
|
1452 |
+
"metadata": {
|
1453 |
+
"id": "Pm52IjYTXMMH"
|
1454 |
+
},
|
1455 |
+
"execution_count": null,
|
1456 |
+
"outputs": []
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"cell_type": "code",
|
1460 |
+
"source": [
|
1461 |
+
"# Plotting\n",
|
1462 |
+
"fig = plt.figure(figsize=(15, 5))\n",
|
1463 |
+
"\n",
|
1464 |
+
"# Original space\n",
|
1465 |
+
"ax1 = fig.add_subplot(131)\n",
|
1466 |
+
"for traj, valid in zip(trajectories_pca[:10], df['is_valid'].tolist()[:10]): # Plot first 10 for clarity\n",
|
1467 |
+
" color = 'green' if valid else 'red'\n",
|
1468 |
+
" ax1.plot(traj[:, 0], traj[:, 1], color=color, alpha=0.7)\n",
|
1469 |
+
"ax1.set_xlabel('PC1 (q)', fontsize=12)\n",
|
1470 |
+
"ax1.set_ylabel('PC2 (p)', fontsize=12)\n",
|
1471 |
+
"ax1.set_title('Original Phase Space', fontsize=14)\n",
|
1472 |
+
"ax1.legend([valid_handle, invalid_handle], ['Valid', 'Invalid'], loc='upper right', fontsize=12)\n",
|
1473 |
+
"\n",
|
1474 |
+
"# Action-Angle space\n",
|
1475 |
+
"ax2 = fig.add_subplot(132)\n",
|
1476 |
+
"for traj, valid in zip(action_angle_trajectories[:10], df['is_valid'].tolist()[:10]):\n",
|
1477 |
+
" color = 'green' if valid else 'red'\n",
|
1478 |
+
" ax2.plot(traj[:, 0], traj[:, 1], color=color, alpha=0.7)\n",
|
1479 |
+
"ax2.set_xlabel('Action (I)', fontsize=12)\n",
|
1480 |
+
"ax2.set_ylabel('Angle (theta)', fontsize=12)\n",
|
1481 |
+
"ax2.set_title('Action-Angle Space', fontsize=14)\n",
|
1482 |
+
"ax2.legend([valid_handle, invalid_handle], ['Valid', 'Invalid'], loc='upper right', fontsize=12)\n",
|
1483 |
+
"\n",
|
1484 |
+
"# 3D visualization\n",
|
1485 |
+
"ax3 = fig.add_subplot(133, projection='3d')\n",
|
1486 |
+
"for traj, valid in zip(action_angle_trajectories[:10], df['is_valid'].tolist()[:10]):\n",
|
1487 |
+
" color = 'green' if valid else 'red'\n",
|
1488 |
+
" ax3.plot(traj[:, 0], np.cos(traj[:, 1]), np.sin(traj[:, 1]), color=color, alpha=0.7)\n",
|
1489 |
+
"ax3.set_xlabel('Action (I)', fontsize=12)\n",
|
1490 |
+
"ax3.set_ylabel('cos(theta)', fontsize=12)\n",
|
1491 |
+
"ax3.set_zlabel('sin(theta)', fontsize=12)\n",
|
1492 |
+
"ax3.set_title('3D Action-Angle Space', fontsize=14)\n",
|
1493 |
+
"ax3.legend([valid_handle, invalid_handle], ['Valid', 'Invalid'], loc='upper right', fontsize=12)\n",
|
1494 |
+
"\n",
|
1495 |
+
"plt.tight_layout()\n",
|
1496 |
+
"plt.savefig('canonical_transformation_analysis_with_validity.png', dpi=300, bbox_inches='tight')\n",
|
1497 |
+
"plt.show()"
|
1498 |
+
],
|
1499 |
+
"metadata": {
|
1500 |
+
"id": "YlzvprO0ZBo1"
|
1501 |
+
},
|
1502 |
+
"execution_count": null,
|
1503 |
+
"outputs": []
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"cell_type": "markdown",
|
1507 |
+
"source": [
|
1508 |
+
"## Conservation laws"
|
1509 |
+
],
|
1510 |
+
"metadata": {
|
1511 |
+
"id": "b-FE7nQWW1Oe"
|
1512 |
+
}
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"cell_type": "code",
|
1516 |
+
"source": [
|
1517 |
+
"def calculate_hamiltonian(q, p):\n",
|
1518 |
+
" \"\"\"Simple Hamiltonian function\"\"\"\n",
|
1519 |
+
" return 0.5 * (q**2 + p**2)\n",
|
1520 |
+
"\n",
|
1521 |
+
"def calculate_angular_momentum(q, p):\n",
|
1522 |
+
" \"\"\"Angular momentum-like quantity\"\"\"\n",
|
1523 |
+
" return q * p\n",
|
1524 |
+
"\n",
|
1525 |
+
"def calculate_energy_like_quantity(q, p):\n",
|
1526 |
+
" \"\"\"Energy-like conserved quantity\"\"\"\n",
|
1527 |
+
" return q**2 - p**2\n",
|
1528 |
+
"\n",
|
1529 |
+
"def analyze_conservation(trajectories, quantity_func, quantity_name):\n",
|
1530 |
+
" conserved_scores = []\n",
|
1531 |
+
" for traj in trajectories:\n",
|
1532 |
+
" q_start, q_end = traj[:, 0]\n",
|
1533 |
+
" p_start, p_end = traj[:, 1]\n",
|
1534 |
+
" quantity_start = quantity_func(q_start, p_start)\n",
|
1535 |
+
" quantity_end = quantity_func(q_end, p_end)\n",
|
1536 |
+
" change = abs(quantity_end - quantity_start)\n",
|
1537 |
+
" conserved_scores.append(change)\n",
|
1538 |
+
" return conserved_scores\n",
|
1539 |
+
"\n",
|
1540 |
+
"# Analyze conservation for different quantities\n",
|
1541 |
+
"hamiltonian_scores = analyze_conservation(trajectories_2d, calculate_hamiltonian, \"Hamiltonian\")\n",
|
1542 |
+
"angular_momentum_scores = analyze_conservation(trajectories_2d, calculate_angular_momentum, \"Angular Momentum\")\n",
|
1543 |
+
"energy_scores = analyze_conservation(trajectories_2d, calculate_energy_like_quantity, \"Energy-like Quantity\")\n",
|
1544 |
+
"\n",
|
1545 |
+
"# Print some statistics\n",
|
1546 |
+
"print(\"Hamiltonian changes - Mean: {:.4f}, Std: {:.4f}\".format(np.mean(hamiltonian_scores), np.std(hamiltonian_scores)))\n",
|
1547 |
+
"print(\"Angular Momentum changes - Mean: {:.4f}, Std: {:.4f}\".format(np.mean(angular_momentum_scores), np.std(angular_momentum_scores)))\n",
|
1548 |
+
"print(\"Energy-like Quantity changes - Mean: {:.4f}, Std: {:.4f}\".format(np.mean(energy_scores), np.std(energy_scores)))"
|
1549 |
+
],
|
1550 |
+
"metadata": {
|
1551 |
+
"id": "t_aym0wlWBpg"
|
1552 |
+
},
|
1553 |
+
"execution_count": null,
|
1554 |
+
"outputs": []
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"cell_type": "code",
|
1558 |
+
"source": [
|
1559 |
+
"# Visualize conservation of quantities\n",
|
1560 |
+
"plt.figure(figsize=(15, 5))\n",
|
1561 |
+
"\n",
|
1562 |
+
"plt.subplot(131)\n",
|
1563 |
+
"plt.hist(hamiltonian_scores, bins=20, color='blue', alpha=0.7)\n",
|
1564 |
+
"plt.title(\"Conservation of Hamiltonian\", fontsize=16)\n",
|
1565 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1566 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1567 |
+
"\n",
|
1568 |
+
"plt.subplot(132)\n",
|
1569 |
+
"plt.hist(angular_momentum_scores, bins=20, color='green', alpha=0.7)\n",
|
1570 |
+
"plt.title(\"Conservation of Angular Momentum\", fontsize=16)\n",
|
1571 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1572 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1573 |
+
"\n",
|
1574 |
+
"plt.subplot(133)\n",
|
1575 |
+
"plt.hist(energy_scores, bins=20, color='red', alpha=0.7)\n",
|
1576 |
+
"plt.title(\"Conservation of Energy-like Quantity\", fontsize=16)\n",
|
1577 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1578 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1579 |
+
"\n",
|
1580 |
+
"plt.tight_layout()\n",
|
1581 |
+
"plt.savefig('conservation_laws_analysis.png', dpi=300, bbox_inches='tight')\n",
|
1582 |
+
"plt.show()"
|
1583 |
+
],
|
1584 |
+
"metadata": {
|
1585 |
+
"id": "zOFQfeap55P7"
|
1586 |
+
},
|
1587 |
+
"execution_count": null,
|
1588 |
+
"outputs": []
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"cell_type": "code",
|
1592 |
+
"source": [
|
1593 |
+
"# Calculate the overall range for x-axis\n",
|
1594 |
+
"all_scores = np.concatenate([hamiltonian_scores, angular_momentum_scores, energy_scores])\n",
|
1595 |
+
"min_score = np.min(all_scores)\n",
|
1596 |
+
"max_score = np.max(all_scores)\n",
|
1597 |
+
"\n",
|
1598 |
+
"# Create bins that cover the entire range\n",
|
1599 |
+
"bins = np.linspace(min_score, max_score, 21) # 20 bins\n",
|
1600 |
+
"\n",
|
1601 |
+
"# Compute histograms\n",
|
1602 |
+
"h_hist, _ = np.histogram(hamiltonian_scores, bins=bins)\n",
|
1603 |
+
"a_hist, _ = np.histogram(angular_momentum_scores, bins=bins)\n",
|
1604 |
+
"e_hist, _ = np.histogram(energy_scores, bins=bins)\n",
|
1605 |
+
"\n",
|
1606 |
+
"# Find the maximum frequency across all histograms\n",
|
1607 |
+
"max_freq = max(np.max(h_hist), np.max(a_hist), np.max(e_hist))\n",
|
1608 |
+
"\n",
|
1609 |
+
"plt.figure(figsize=(15, 5))\n",
|
1610 |
+
"\n",
|
1611 |
+
"plt.subplot(131)\n",
|
1612 |
+
"plt.hist(hamiltonian_scores, bins=bins, color='blue', alpha=0.7)\n",
|
1613 |
+
"plt.title(\"Conservation of Hamiltonian\", fontsize=16)\n",
|
1614 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1615 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1616 |
+
"plt.xlim(min_score, max_score)\n",
|
1617 |
+
"plt.ylim(0, max_freq)\n",
|
1618 |
+
"\n",
|
1619 |
+
"plt.subplot(132)\n",
|
1620 |
+
"plt.hist(angular_momentum_scores, bins=bins, color='green', alpha=0.7)\n",
|
1621 |
+
"plt.title(\"Conservation of Angular Momentum\", fontsize=16)\n",
|
1622 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1623 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1624 |
+
"plt.xlim(min_score, max_score)\n",
|
1625 |
+
"plt.ylim(0, max_freq)\n",
|
1626 |
+
"\n",
|
1627 |
+
"plt.subplot(133)\n",
|
1628 |
+
"plt.hist(energy_scores, bins=bins, color='red', alpha=0.7)\n",
|
1629 |
+
"plt.title(\"Conservation of Energy-like Quantity\", fontsize=16)\n",
|
1630 |
+
"plt.xlabel(\"Standard Error\", fontsize=14)\n",
|
1631 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1632 |
+
"plt.xlim(min_score, max_score)\n",
|
1633 |
+
"plt.ylim(0, max_freq)\n",
|
1634 |
+
"\n",
|
1635 |
+
"plt.tight_layout()\n",
|
1636 |
+
"plt.savefig('conservation_laws_analysis_same_scales.png', dpi=300, bbox_inches='tight')\n",
|
1637 |
+
"plt.show()"
|
1638 |
+
],
|
1639 |
+
"metadata": {
|
1640 |
+
"id": "9FYy8-nIZwsy"
|
1641 |
+
},
|
1642 |
+
"execution_count": null,
|
1643 |
+
"outputs": []
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"cell_type": "code",
|
1647 |
+
"source": [
|
1648 |
+
"def calculate_trajectory_entropy(trajectory):\n",
|
1649 |
+
" \"\"\"Calculate the entropy of a trajectory.\"\"\"\n",
|
1650 |
+
" # Discretize the trajectory into bins\n",
|
1651 |
+
" hist, _ = np.histogram(trajectory, bins=20, density=True)\n",
|
1652 |
+
" return entropy(hist)\n",
|
1653 |
+
"\n",
|
1654 |
+
"def calculate_free_energy(trajectory, temperature=1.0):\n",
|
1655 |
+
" \"\"\"Calculate a free energy analog for a trajectory.\"\"\"\n",
|
1656 |
+
" # Assume energy is proportional to the squared distance from the origin\n",
|
1657 |
+
" energy = np.sum(trajectory**2, axis=1)\n",
|
1658 |
+
" entropy = calculate_trajectory_entropy(energy)\n",
|
1659 |
+
" return np.mean(energy) - temperature * entropy\n",
|
1660 |
+
"\n",
|
1661 |
+
"# Apply to all trajectories\n",
|
1662 |
+
"trajectory_entropies = [calculate_trajectory_entropy(traj) for traj in trajectories_2d]\n",
|
1663 |
+
"free_energies = [calculate_free_energy(traj) for traj in trajectories_2d]\n",
|
1664 |
+
"\n",
|
1665 |
+
"# Analyze the results\n",
|
1666 |
+
"print(\"Mean trajectory entropy:\", np.mean(trajectory_entropies))\n",
|
1667 |
+
"print(\"Mean free energy:\", np.mean(free_energies))\n",
|
1668 |
+
"\n",
|
1669 |
+
"# Visualize the results\n",
|
1670 |
+
"plt.figure(figsize=(12, 5))\n",
|
1671 |
+
"plt.subplot(121)\n",
|
1672 |
+
"plt.hist(trajectory_entropies, bins=20)\n",
|
1673 |
+
"plt.title(\"Distribution of Trajectory Entropies\", fontsize=16)\n",
|
1674 |
+
"plt.xlabel(\"Entropy\", fontsize=14)\n",
|
1675 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1676 |
+
"\n",
|
1677 |
+
"plt.subplot(122)\n",
|
1678 |
+
"plt.hist(free_energies, bins=20)\n",
|
1679 |
+
"plt.title(\"Distribution of Free Energies\", fontsize=16)\n",
|
1680 |
+
"plt.xlabel(\"Free Energy\", fontsize=14)\n",
|
1681 |
+
"plt.ylabel(\"Frequency\", fontsize=14)\n",
|
1682 |
+
"plt.tight_layout()\n",
|
1683 |
+
"plt.show()"
|
1684 |
+
],
|
1685 |
+
"metadata": {
|
1686 |
+
"id": "Ws8Ugh7kbj9T"
|
1687 |
+
},
|
1688 |
+
"execution_count": null,
|
1689 |
+
"outputs": []
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"cell_type": "code",
|
1693 |
+
"source": [
|
1694 |
+
"def measure_computation_time(trajectories, num_samples):\n",
|
1695 |
+
" \"\"\"Measure computation time for different numbers of trajectories.\"\"\"\n",
|
1696 |
+
" times = []\n",
|
1697 |
+
" sample_sizes = range(100, num_samples, 100)\n",
|
1698 |
+
"\n",
|
1699 |
+
" for size in sample_sizes:\n",
|
1700 |
+
" start_time = time.time()\n",
|
1701 |
+
" _ = [analyze_trajectory(traj) for traj in trajectories[:size]]\n",
|
1702 |
+
" end_time = time.time()\n",
|
1703 |
+
" times.append(end_time - start_time)\n",
|
1704 |
+
"\n",
|
1705 |
+
" return sample_sizes, times\n",
|
1706 |
+
"\n",
|
1707 |
+
"def analyze_trajectory(trajectory):\n",
|
1708 |
+
" \"\"\"Placeholder for your trajectory analysis function.\"\"\"\n",
|
1709 |
+
" # Replace this with your actual analysis\n",
|
1710 |
+
" return calculate_hamiltonian(trajectory[:, 0], trajectory[:, 1])\n",
|
1711 |
+
"\n",
|
1712 |
+
"# Measure computation time\n",
|
1713 |
+
"sample_sizes, computation_times = measure_computation_time(trajectories_2d, len(trajectories_2d))\n"
|
1714 |
+
],
|
1715 |
+
"metadata": {
|
1716 |
+
"id": "c4hO5bUXb_VP"
|
1717 |
+
},
|
1718 |
+
"execution_count": null,
|
1719 |
+
"outputs": []
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"cell_type": "code",
|
1723 |
+
"source": [
|
1724 |
+
"# Plot the results\n",
|
1725 |
+
"plt.figure(figsize=(10, 6))\n",
|
1726 |
+
"plt.plot(sample_sizes, computation_times, 'b-')\n",
|
1727 |
+
"plt.title(\"Computational Complexity\", fontsize=16)\n",
|
1728 |
+
"plt.xlabel(\"Number of Trajectories\", fontsize=14)\n",
|
1729 |
+
"plt.ylabel(\"Computation Time (seconds)\", fontsize=14)\n",
|
1730 |
+
"plt.grid(True)\n",
|
1731 |
+
"plt.show()"
|
1732 |
+
],
|
1733 |
+
"metadata": {
|
1734 |
+
"id": "OWw-V4apZX48"
|
1735 |
+
},
|
1736 |
+
"execution_count": null,
|
1737 |
+
"outputs": []
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"cell_type": "code",
|
1741 |
+
"source": [
|
1742 |
+
"# Estimate complexity\n",
|
1743 |
+
"def complexity_function(x, a, b):\n",
|
1744 |
+
" return a * x**b\n",
|
1745 |
+
"\n",
|
1746 |
+
"popt, _ = curve_fit(complexity_function, sample_sizes, computation_times)\n",
|
1747 |
+
"\n",
|
1748 |
+
"print(f\"Estimated complexity: O(n^{popt[1]:.2f})\")"
|
1749 |
+
],
|
1750 |
+
"metadata": {
|
1751 |
+
"id": "Pady9Cj8ZIdz"
|
1752 |
+
},
|
1753 |
+
"execution_count": null,
|
1754 |
+
"outputs": []
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"cell_type": "code",
|
1758 |
+
"source": [
|
1759 |
+
"def classify_trajectory(trajectory):\n",
|
1760 |
+
" \"\"\"Classify a trajectory as valid or invalid based on Hamiltonian conservation.\"\"\"\n",
|
1761 |
+
" hamiltonian_change = np.abs(calculate_hamiltonian(trajectory[0, 0], trajectory[0, 1]) -\n",
|
1762 |
+
" calculate_hamiltonian(trajectory[-1, 0], trajectory[-1, 1]))\n",
|
1763 |
+
" return hamiltonian_change < 0.5 # Threshold for classification\n",
|
1764 |
+
"\n",
|
1765 |
+
"# Split the data\n",
|
1766 |
+
"X_train, X_test, y_train, y_test = train_test_split(trajectories_2d, df['is_valid'], test_size=0.2, random_state=42)\n",
|
1767 |
+
"\n",
|
1768 |
+
"# Classify test set\n",
|
1769 |
+
"y_pred = [classify_trajectory(traj) for traj in X_test]\n",
|
1770 |
+
"\n",
|
1771 |
+
"# Analyze errors\n",
|
1772 |
+
"conf_matrix = confusion_matrix(y_test, y_pred)\n",
|
1773 |
+
"class_report = classification_report(y_test, y_pred)\n",
|
1774 |
+
"\n",
|
1775 |
+
"print(\"Confusion Matrix:\")\n",
|
1776 |
+
"print(conf_matrix)\n",
|
1777 |
+
"print(\"\\nClassification Report:\")\n",
|
1778 |
+
"print(class_report)\n",
|
1779 |
+
"\n",
|
1780 |
+
"# Analyze misclassified trajectories\n",
|
1781 |
+
"misclassified = X_test[y_test != y_pred]\n",
|
1782 |
+
"misclassified_labels = y_test[y_test != y_pred]\n",
|
1783 |
+
"\n",
|
1784 |
+
"print(\"\\nAnalysis of Misclassified Trajectories:\")\n",
|
1785 |
+
"for i, (traj, true_label) in enumerate(zip(misclassified, misclassified_labels)):\n",
|
1786 |
+
" hamiltonian_change = np.abs(calculate_hamiltonian(traj[0, 0], traj[0, 1]) -\n",
|
1787 |
+
" calculate_hamiltonian(traj[-1, 0], traj[-1, 1]))\n",
|
1788 |
+
" print(f\"Trajectory {i}:\")\n",
|
1789 |
+
" print(f\" True label: {'Valid' if true_label else 'Invalid'}\")\n",
|
1790 |
+
" print(f\" Predicted: {'Valid' if classify_trajectory(traj) else 'Invalid'}\")\n",
|
1791 |
+
" print(f\" Hamiltonian change: {hamiltonian_change:.4f}\")\n",
|
1792 |
+
" print(f\" Start point: {traj[0]}\")\n",
|
1793 |
+
" print(f\" End point: {traj[-1]}\")\n",
|
1794 |
+
" print()\n",
|
1795 |
+
"\n",
|
1796 |
+
"# Visualize some misclassified trajectories\n",
|
1797 |
+
"plt.figure(figsize=(15, 5))\n",
|
1798 |
+
"for i in range(3):\n",
|
1799 |
+
" plt.subplot(1, 3, i+1)\n",
|
1800 |
+
" plt.plot(misclassified[i][:, 0], misclassified[i][:, 1], 'r-')\n",
|
1801 |
+
" plt.scatter(misclassified[i][0, 0], misclassified[i][0, 1], c='g', label='Start')\n",
|
1802 |
+
" plt.scatter(misclassified[i][-1, 0], misclassified[i][-1, 1], c='b', label='End')\n",
|
1803 |
+
" plt.title(f\"Misclassified Trajectory {i+1}\", fontsize=16)\n",
|
1804 |
+
" plt.xlabel(\"PC1\", fontsize=14)\n",
|
1805 |
+
" plt.ylabel(\"PC2\", fontsize=14)\n",
|
1806 |
+
" plt.legend()\n",
|
1807 |
+
"plt.tight_layout()\n",
|
1808 |
+
"plt.show()"
|
1809 |
+
],
|
1810 |
+
"metadata": {
|
1811 |
+
"id": "p9PhYaNpcJJd"
|
1812 |
+
},
|
1813 |
+
"execution_count": null,
|
1814 |
+
"outputs": []
|
1815 |
+
}
|
1816 |
+
]
|
1817 |
+
}
|