File size: 2,888 Bytes
4d6952c
 
5b0f281
4d6952c
 
 
 
 
 
 
 
 
 
 
5b0f281
4d6952c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: JayHyeon/Qwen2.5-0.5B-SFT-2e-5-5ep
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: Qwen2.5-0.5B-SFT-2e-5-5ep-MDPO_5e-7_3ep_0alp_0lam
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---

# Model Card for Qwen2.5-0.5B-SFT-2e-5-5ep-MDPO_5e-7_3ep_0alp_0lam

This model is a fine-tuned version of [JayHyeon/Qwen2.5-0.5B-SFT-2e-5-5ep](https://huggingface.co/JayHyeon/Qwen2.5-0.5B-SFT-2e-5-5ep) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="JayHyeon/Qwen2.5-0.5B-SFT-2e-5-5ep-MDPO_5e-7_3ep_0alp_0lam", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/4rhfqabs)

This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).

### Framework versions

- TRL: 0.13.0.dev0
- Transformers: 4.47.0.dev0
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations

Cite DPO as:

```bibtex
@inproceedings{rafailov2023direct,
    title        = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
    author       = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
    year         = 2023,
    booktitle    = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
    url          = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
    editor       = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```