Jayveersinh-Raj
commited on
Commit
•
f351391
1
Parent(s):
69ffa00
Update README.md
Browse files
README.md
CHANGED
@@ -3,4 +3,31 @@ library_name: peft
|
|
3 |
base_model: bigscience/bloom-3b
|
4 |
---
|
5 |
|
6 |
-
Low Rank Adapter for Bloom decoder for question answering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
base_model: bigscience/bloom-3b
|
4 |
---
|
5 |
|
6 |
+
Low Rank Adapter for Bloom decoder for question answering
|
7 |
+
|
8 |
+
# Example usage:
|
9 |
+
import torch
|
10 |
+
from peft import PeftModel, PeftConfig
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
12 |
+
from IPython.display import display, Markdown
|
13 |
+
|
14 |
+
peft_model_id = "Jayveersinh-Raj/bloom-que-ans"
|
15 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
18 |
+
|
19 |
+
# Load the Lora model
|
20 |
+
qa_model = PeftModel.from_pretrained(model, peft_model_id)
|
21 |
+
|
22 |
+
def make_inference(context, question):
|
23 |
+
batch = tokenizer(f"### CONTEXT\n{context}\n\n### QUESTION\n{question}\n\n### ANSWER\n", return_tensors='pt').to("cuda")
|
24 |
+
|
25 |
+
with torch.cuda.amp.autocast():
|
26 |
+
output_tokens = qa_model.generate(**batch, max_new_tokens=200)
|
27 |
+
|
28 |
+
display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
|
29 |
+
|
30 |
+
context = ""
|
31 |
+
question = "What is the best food?"
|
32 |
+
|
33 |
+
make_inference(context, question)
|