--- library_name: peft base_model: autopilot-ai/Indic-sentence-completion --- Low Rank Adapter for Bloom decoder for grammar correction. # Example Usage: import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer from IPython.display import display, Markdown peft_model_id = "Jayveersinh-Raj/bloom-sentence-correction" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model qa_model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(question): batch = tokenizer(f"### INCORRECT\n{question}\n\n### CORRECT\n", return_tensors='pt').to("cuda") with torch.cuda.amp.autocast(): output_tokens = qa_model.generate(**batch, max_new_tokens=200) display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True)))) text = "I red a book last night" make_inference(text)