Jellon commited on
Commit
2b3de3b
·
verified ·
1 Parent(s): 607d8d1

Upload 14 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tekken.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - de
6
+ - es
7
+ - it
8
+ - pt
9
+ - zh
10
+ - ja
11
+ - ru
12
+ - ko
13
+ license: apache-2.0
14
+ library_name: vllm
15
+ inference: false
16
+ base_model:
17
+ - mistralai/Mistral-Small-24B-Base-2501
18
+ extra_gated_description: >-
19
+ If you want to learn more about how we process your personal data, please read
20
+ our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
21
+ tags:
22
+ - transformers
23
+ ---
24
+
25
+ # Model Card for Mistral-Small-24B-Instruct-2501
26
+
27
+ Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models!
28
+ This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501).
29
+
30
+ Mistral Small can be deployed locally and is exceptionally "knowledge-dense", fitting in a single RTX 4090 or a 32GB RAM MacBook once quantized.
31
+ Perfect for:
32
+ - Fast response conversational agents.
33
+ - Low latency function calling.
34
+ - Subject matter experts via fine-tuning.
35
+ - Local inference for hobbyists and organizations handling sensitive data.
36
+
37
+ For enterprises that need specialized capabilities (increased context, particular modalities, domain specific knowledge, etc.), we will be releasing commercial models beyond what Mistral AI contributes to the community.
38
+
39
+ This release demonstrates our commitment to open source, serving as a strong base model.
40
+
41
+ Learn more about Mistral Small in our [blog post](https://mistral.ai/news/mistral-small-3/).
42
+
43
+ Model developper: Mistral AI Team
44
+
45
+ ## Key Features
46
+ - **Multilingual:** Supports dozens of languages, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch, and Polish.
47
+ - **Agent-Centric:** Offers best-in-class agentic capabilities with native function calling and JSON outputting.
48
+ - **Advanced Reasoning:** State-of-the-art conversational and reasoning capabilities.
49
+ - **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes.
50
+ - **Context Window:** A 32k context window.
51
+ - **System Prompt:** Maintains strong adherence and support for system prompts.
52
+ - **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size.
53
+
54
+ ## Benchmark results
55
+
56
+
57
+ ### Human evaluated benchmarks
58
+
59
+ | Category | Gemma-2-27B | Qwen-2.5-32B | Llama-3.3-70B | Gpt4o-mini |
60
+ |----------|-------------|--------------|---------------|------------|
61
+ | Mistral is better | 0.536 | 0.496 | 0.192 | 0.200 |
62
+ | Mistral is slightly better | 0.196 | 0.184 | 0.164 | 0.204 |
63
+ | Ties | 0.052 | 0.060 | 0.236 | 0.160 |
64
+ | Other is slightly better | 0.060 | 0.088 | 0.112 | 0.124 |
65
+ | Other is better | 0.156 | 0.172 | 0.296 | 0.312 |
66
+
67
+ **Note**:
68
+
69
+ - We conducted side by side evaluations with an external third-party vendor, on a set of over 1k proprietary coding and generalist prompts.
70
+ - Evaluators were tasked with selecting their preferred model response from anonymized generations produced by Mistral Small 3 vs another model.
71
+ - We are aware that in some cases the benchmarks on human judgement starkly differ from publicly available benchmarks, but have taken extra caution in verifying a fair evaluation. We are confident that the above benchmarks are valid.
72
+
73
+ ### Publicly accesible benchmarks
74
+
75
+ **Reasoning & Knowledge**
76
+
77
+ | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
78
+ |------------|---------------|--------------|---------------|---------------|-------------|
79
+ | mmlu_pro_5shot_cot_instruct | 0.663 | 0.536 | 0.666 | 0.683 | 0.617 |
80
+ | gpqa_main_cot_5shot_instruct | 0.453 | 0.344 | 0.531 | 0.404 | 0.377 |
81
+
82
+ **Math & Coding**
83
+
84
+ | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
85
+ |------------|---------------|--------------|---------------|---------------|-------------|
86
+ | humaneval_instruct_pass@1 | 0.848 | 0.732 | 0.854 | 0.909 | 0.890 |
87
+ | math_instruct | 0.706 | 0.535 | 0.743 | 0.819 | 0.761 |
88
+
89
+ **Instruction following**
90
+
91
+ | Evaluation | mistral-small-24B-instruct-2501 | gemma-2b-27b | llama-3.3-70b | qwen2.5-32b | gpt-4o-mini-2024-07-18 |
92
+ |------------|---------------|--------------|---------------|---------------|-------------|
93
+ | mtbench_dev | 8.35 | 7.86 | 7.96 | 8.26 | 8.33 |
94
+ | wildbench | 52.27 | 48.21 | 50.04 | 52.73 | 56.13 |
95
+ | arena_hard | 0.873 | 0.788 | 0.840 | 0.860 | 0.897 |
96
+ | ifeval | 0.829 | 0.8065 | 0.8835 | 0.8401 | 0.8499 |
97
+
98
+ **Note**:
99
+
100
+ - Performance accuracy on all benchmarks were obtained through the same internal evaluation pipeline - as such, numbers may vary slightly from previously reported performance
101
+ ([Qwen2.5-32B-Instruct](https://qwenlm.github.io/blog/qwen2.5/), [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct), [Gemma-2-27B-IT](https://huggingface.co/google/gemma-2-27b-it)).
102
+ - Judge based evals such as Wildbench, Arena hard and MTBench were based on gpt-4o-2024-05-13.
103
+
104
+ ### Basic Instruct Template (V7-Tekken)
105
+
106
+ ```
107
+ <s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST]
108
+ ```
109
+ *`<system_prompt>`, `<user message>` and `<assistant response>` are placeholders.*
110
+
111
+ ***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth***
112
+
113
+ ## Usage
114
+
115
+ The model can be used with the following frameworks;
116
+ - [`vllm`](https://github.com/vllm-project/vllm): See [here](#vLLM)
117
+ - [`transformers`](https://github.com/huggingface/transformers): See [here](#Transformers)
118
+
119
+ ### vLLM
120
+
121
+ We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
122
+ to implement production-ready inference pipelines.
123
+
124
+ **Note 1**: We recommond using a relatively low temperature, such as `temperature=0.15`.
125
+
126
+ **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend the following
127
+ system prompt:
128
+
129
+ ```
130
+ system_prompt = """You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.
131
+ Your knowledge base was last updated on 2023-10-01. The current date is 2025-01-30.
132
+ When you're not sure about some information, you say that you don't have the information and don't make up anything.
133
+ If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")"""
134
+ ```
135
+
136
+ **_Installation_**
137
+
138
+ Make sure you install [`vLLM >= 0.6.4`](https://github.com/vllm-project/vllm/releases/tag/v0.6.4):
139
+
140
+ ```
141
+ pip install --upgrade vllm
142
+ ```
143
+
144
+ Also make sure you have [`mistral_common >= 1.5.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.2) installed:
145
+
146
+ ```
147
+ pip install --upgrade mistral_common
148
+ ```
149
+
150
+ You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
151
+
152
+ #### Server
153
+
154
+ We recommand that you use Mistral-Small-24B-Instruct-2501 in a server/client setting.
155
+
156
+ 1. Spin up a server:
157
+
158
+ ```
159
+ vllm serve mistralai/Mistral-Small-24B-Instruct-2501 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice
160
+ ```
161
+
162
+ **Note:** Running Mistral-Small-24B-Instruct-2501 on GPU requires ~55 GB of GPU RAM in bf16 or fp16.
163
+
164
+
165
+ 2. To ping the client you can use a simple Python snippet.
166
+
167
+ ```py
168
+ import requests
169
+ import json
170
+ from datetime import datetime, timedelta
171
+
172
+ url = "http://<your-server>:8000/v1/chat/completions"
173
+ headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
174
+
175
+ model = "mistralai/Mistral-Small-24B-Instruct-2501"
176
+
177
+ messages = [
178
+ {
179
+ "role": "system",
180
+ "content": "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
181
+ },
182
+ {
183
+ "role": "user",
184
+ "content": "Give me 5 non-formal ways to say 'See you later' in French."
185
+ },
186
+ ]
187
+
188
+ data = {"model": model, "messages": messages}
189
+
190
+ response = requests.post(url, headers=headers, data=json.dumps(data))
191
+ print(response.json()["choices"][0]["message"]["content"])
192
+
193
+ # Sure, here are five non-formal ways to say "See you later" in French:
194
+ #
195
+ # 1. À plus tard
196
+ # 2. À plus
197
+ # 3. Salut
198
+ # 4. À toute
199
+ # 5. Bisous
200
+ #
201
+ # ```
202
+ # /\_/\
203
+ # ( o.o )
204
+ # > ^ <
205
+ # ```
206
+ ```
207
+
208
+ ### Function calling
209
+
210
+ Mistral-Small-24-Instruct-2501 is excellent at function / tool calling tasks via vLLM. *E.g.:*
211
+
212
+ <details>
213
+ <summary>Example</summary>
214
+
215
+ ```py
216
+ import requests
217
+ import json
218
+ from huggingface_hub import hf_hub_download
219
+ from datetime import datetime, timedelta
220
+
221
+ url = "http://<your-url>:8000/v1/chat/completions"
222
+ headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
223
+
224
+ model = "mistralai/Mistral-Small-24B-Instruct-2501"
225
+
226
+
227
+ def load_system_prompt(repo_id: str, filename: str) -> str:
228
+ file_path = hf_hub_download(repo_id=repo_id, filename=filename)
229
+ with open(file_path, "r") as file:
230
+ system_prompt = file.read()
231
+ today = datetime.today().strftime("%Y-%m-%d")
232
+ yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
233
+ model_name = repo_id.split("/")[-1]
234
+ return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
235
+
236
+
237
+ SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
238
+
239
+
240
+ tools = [
241
+ {
242
+ "type": "function",
243
+ "function": {
244
+ "name": "get_current_weather",
245
+ "description": "Get the current weather in a given location",
246
+ "parameters": {
247
+ "type": "object",
248
+ "properties": {
249
+ "city": {
250
+ "type": "string",
251
+ "description": "The city to find the weather for, e.g. 'San Francisco'",
252
+ },
253
+ "state": {
254
+ "type": "string",
255
+ "description": "The state abbreviation, e.g. 'CA' for California",
256
+ },
257
+ "unit": {
258
+ "type": "string",
259
+ "description": "The unit for temperature",
260
+ "enum": ["celsius", "fahrenheit"],
261
+ },
262
+ },
263
+ "required": ["city", "state", "unit"],
264
+ },
265
+ },
266
+ },
267
+ {
268
+ "type": "function",
269
+ "function": {
270
+ "name": "rewrite",
271
+ "description": "Rewrite a given text for improved clarity",
272
+ "parameters": {
273
+ "type": "object",
274
+ "properties": {
275
+ "text": {
276
+ "type": "string",
277
+ "description": "The input text to rewrite",
278
+ }
279
+ },
280
+ },
281
+ },
282
+ },
283
+ ]
284
+
285
+ messages = [
286
+ {"role": "system", "content": SYSTEM_PROMPT},
287
+ {
288
+ "role": "user",
289
+ "content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.",
290
+ },
291
+ {
292
+ "role": "assistant",
293
+ "content": "",
294
+ "tool_calls": [
295
+ {
296
+ "id": "bbc5b7ede",
297
+ "type": "function",
298
+ "function": {
299
+ "name": "rewrite",
300
+ "arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}',
301
+ },
302
+ }
303
+ ],
304
+ },
305
+ {
306
+ "role": "tool",
307
+ "content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}',
308
+ "tool_call_id": "bbc5b7ede",
309
+ "name": "rewrite",
310
+ },
311
+ {
312
+ "role": "assistant",
313
+ "content": "---\n\nOpenAI is a FOR-profit company.",
314
+ },
315
+ {
316
+ "role": "user",
317
+ "content": "Can you tell me what the temperature will be in Dallas, in Fahrenheit?",
318
+ },
319
+ ]
320
+
321
+ data = {"model": model, "messages": messages, "tools": tools}
322
+
323
+ response = requests.post(url, headers=headers, data=json.dumps(data))
324
+ import ipdb; ipdb.set_trace()
325
+ print(response.json()["choices"][0]["message"]["tool_calls"])
326
+ # [{'id': '8PdihwL6d', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}'}}]
327
+ ```
328
+
329
+ </details>
330
+
331
+ #### Offline
332
+
333
+ ```py
334
+ from vllm import LLM
335
+ from vllm.sampling_params import SamplingParams
336
+ from datetime import datetime, timedelta
337
+
338
+ SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
339
+
340
+ user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."
341
+
342
+ messages = [
343
+ {
344
+ "role": "system",
345
+ "content": SYSTEM_PROMPT
346
+ },
347
+ {
348
+ "role": "user",
349
+ "content": user_prompt
350
+ },
351
+ ]
352
+
353
+ # note that running this model on GPU requires over 60 GB of GPU RAM
354
+ llm = LLM(model=model_name, tokenizer_mode="mistral", tensor_parallel_size=8)
355
+
356
+ sampling_params = SamplingParams(max_tokens=512, temperature=0.15)
357
+ outputs = llm.chat(messages, sampling_params=sampling_params)
358
+
359
+ print(outputs[0].outputs[0].text)
360
+ # Sure, here are five non-formal ways to say "See you later" in French:
361
+ #
362
+ # 1. À plus tard
363
+ # 2. À plus
364
+ # 3. Salut
365
+ # 4. À toute
366
+ # 5. Bisous
367
+ #
368
+ # ```
369
+ # /\_/\
370
+ # ( o.o )
371
+ # > ^ <
372
+ # ```
373
+ ```
374
+
375
+ ### Transformers
376
+
377
+ If you want to use Hugging Face transformers to generate text, you can do something like this.
378
+
379
+ ```py
380
+ from transformers import pipeline
381
+ import torch
382
+
383
+ messages = [
384
+ {"role": "user", "content": "Give me 5 non-formal ways to say 'See you later' in French."},
385
+ ]
386
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Instruct-2501", max_new_tokens=256, torch_dtype=torch.bfloat16)
387
+ chatbot(messages)
388
+ ```
389
+
390
+
391
+ ### Ollama
392
+
393
+ [Ollama](https://github.com/ollama/ollama) can run this model locally on MacOS, Windows and Linux.
394
+
395
+ ```
396
+ ollama run mistral-small
397
+ ```
398
+
399
+ 4-bit quantization (aliased to default):
400
+ ```
401
+ ollama run mistral-small:24b-instruct-2501-q4_K_M
402
+ ```
403
+
404
+ 8-bit quantization:
405
+ ```
406
+ ollama run mistral-small:24b-instruct-2501-q8_0
407
+ ```
408
+
409
+ FP16:
410
+ ```
411
+ ollama run mistral-small:24b-instruct-2501-fp16
412
+ ```
SYSTEM_PROMPT.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ You are {name}, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.
2
+
3
+ Your knowledge base was last updated on 2023-10-01.
4
+ The current date is {today}.
5
+
6
+ When you're not sure about some information, you say that you don't have the information and don't make up anything.
7
+ If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. "What are some good restaurants around me?" => "Where are you?" or "When is the next flight to Tokyo" => "Where do you travel from?").
8
+ You are always very attentive to dates, in particular you try to resolve dates (e.g. "yesterday" is {yesterday}) and when asked about information at specific dates, you discard information that is at another date.
9
+ You follow these instructions in all languages, and always respond to the user in the language they use or request.
10
+ Next sections describe the capabilities that you have.
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 32768,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 100000000.0,
20
+ "sliding_window": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.49.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 131072,
26
+ "quantization_config": {
27
+ "quant_method": "exl2",
28
+ "version": "0.2.7",
29
+ "bits": 6.0,
30
+ "head_bits": 8,
31
+ "calibration": {
32
+ "rows": 115,
33
+ "length": 2048,
34
+ "dataset": "(default)"
35
+ }
36
+ }
37
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "temperature": 0.15,
6
+ "do_sample": true,
7
+ "transformers_version": "4.49.0.dev0"
8
+ }
gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tekken.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
measurement.json ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 47144806400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00010-of-00010.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
368
+ "model.norm.weight": "model-00010-of-00010.safetensors"
369
+ }
370
+ }
output-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3178ce4bac44ff63dbd61b1ede2739c512270fa8b9a720f1dad7959809d544
3
+ size 8520778406
output-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62294cbd3e2a32e9911360aeccf080334b1151ac55c7e47136a066637d84439d
3
+ size 1613114498
params.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dim": 5120,
3
+ "n_layers": 40,
4
+ "head_dim": 128,
5
+ "hidden_dim": 32768,
6
+ "n_heads": 32,
7
+ "n_kv_heads": 8,
8
+ "norm_eps": 1e-05,
9
+ "vocab_size": 131072,
10
+ "rope_theta": 100000000.0,
11
+ "max_seq_len": 32768
12
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,1025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "unk_token": {
1019
+ "content": "<unk>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ }
1025
+ }
tekken.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4b90a968dbc67ef3975129d0b78a2e3cbb6bea340ab9205f22e8a0308b1ffc5
3
+ size 14801223
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff