--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-qqp results: - task: type: text-classification name: Text Classification dataset: name: GLUE QQP type: glue args: qqp metrics: - type: accuracy value: 0.9152609448429384 name: Accuracy - type: f1 value: 0.8867138416771377 name: F1 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: qqp split: validation metrics: - type: accuracy value: 0.9153104130596093 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBmYmQ4MjhlZDBkOWM4YzNiNTE3MDNhMDVlMDNhNmU4YjBiZjNmMDlhOGU2ZmZjMzAwODczNDA0NzkwMDJkMyIsInZlcnNpb24iOjF9.Xpv1jn9glM7lbsQNQvtCnQuueHeGLD0xzEaquc3HfB1p_zFvDRe38mv_B1aHt-YxR16AhfpIbENOM1sPTaAJDA - type: precision value: 0.8732009117551286 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTYyYWEwOWE0YjI1NWJiNWMwNTMxOTc4OTFmYWI4MTJmMDRkMmEwYWRhMDAzYzVmNDA3Y2YzMzJkMDIzYzNjYyIsInZlcnNpb24iOjF9.O0KMG-s8zO6-tAat0HZRL6MN1ZaZQ_Ng3a_-qC5FndZefHktoJDSD9hiuZFTmlY6Vn1UkDlvG1XnnAi1Gv6pBg - type: recall value: 0.9007725898555593 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ3MzQyM2FlZTc1Y2VjOGY4MGEwMzY2MGM0YjQwNzIwNmVjMmRlNmExYWFlZjU3ZTIyZmJkMGRiZmJkMGZhMCIsInZlcnNpb24iOjF9.eYT8-djtIVkGrr8rhjqE2arUYgXQY0so9o8F4dXkLQt1fNEVa9kxTicapp4h1yTfU2jPpH778J_nvMCzwqixDw - type: auc value: 0.9685235648551861 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWRiZGYyYjE5MDFmNWQzN2ZkNGRkMTA4ZTEwNzYxMTg1NTNlY2VjODM0ZDY0NzA1NjQ3MGE2ZWNmY2MxYmNkMyIsInZlcnNpb24iOjF9.aQOO1uk3UON5hgbuMkKK93Yt1aRH4TpBad-KDwjj0_IM9Y11_-itRf6vZuWCkr0gZmyZ-4b0PA4v_dvf88y8Aw - type: f1 value: 0.8867724867724867 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgxODBkMjZmMjdlZjAyNjA3Njk5OTA4NWExOWQ4NzMwNDlhODNlYTQ1NWZhM2JmNjhjOTA4ZjQxY2QwYTk4ZiIsInZlcnNpb24iOjF9.AjkBwMnuDZVnIXs6EE_ooluFrJSavg58EmUt5Oux2feFP7SvUaWbnetkHIyzBIKb5MEyxuPkSxXU3A6Di-t6CA - type: loss value: 0.4435121417045593 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzU1ZDg0MGMyOGE0ZWM1Y2MwZjk0ZTAzNjc1MjBlZTUxNDIyNGZmN2EyZTUyZGM3N2E4NmQwOGUyNDBkOTVjNiIsInZlcnNpb24iOjF9.66LOnSclusAZY9uELpElvbcTuUVEJ95oXnspi9BHHw0tgwv38uUeq0cfojuQ_VsNN0UykiT0NooJdWaixpK4BA --- # roberta-base-qqp This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4435 - Accuracy: 0.9153 - F1: 0.8867 - Combined Score: 0.9010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.2751 | 1.0 | 22741 | 0.3057 | 0.8905 | 0.8512 | 0.8709 | | 0.2443 | 2.0 | 45482 | 0.2530 | 0.9005 | 0.8710 | 0.8857 | | 0.2157 | 3.0 | 68223 | 0.2643 | 0.9070 | 0.8769 | 0.8919 | | 0.1838 | 4.0 | 90964 | 0.2806 | 0.9109 | 0.8815 | 0.8962 | | 0.146 | 5.0 | 113705 | 0.3277 | 0.9113 | 0.8809 | 0.8961 | | 0.1262 | 6.0 | 136446 | 0.3939 | 0.9113 | 0.8812 | 0.8962 | | 0.0867 | 7.0 | 159187 | 0.4435 | 0.9153 | 0.8867 | 0.9010 | | 0.0757 | 8.0 | 181928 | 0.4812 | 0.9147 | 0.8844 | 0.8996 | | 0.0479 | 9.0 | 204669 | 0.5081 | 0.9151 | 0.8871 | 0.9011 | | 0.0379 | 10.0 | 227410 | 0.5647 | 0.9149 | 0.8858 | 0.9003 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1