JeremyHibiki commited on
Commit
76d04a2
·
verified ·
1 Parent(s): 35ad950

Upload convert.py

Browse files
Files changed (1) hide show
  1. convert.py +130 -0
convert.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ from collections import OrderedDict
5
+ from pathlib import Path
6
+ from typing import Dict
7
+
8
+ import torch
9
+ from huggingface_hub import snapshot_download
10
+ from optimum.exporters.onnx import export
11
+ from optimum.exporters.onnx.model_configs import XLMRobertaOnnxConfig
12
+ from optimum.onnxruntime import ORTModelForCustomTasks, ORTOptimizer
13
+ from optimum.onnxruntime.configuration import AutoOptimizationConfig
14
+ from torch import Tensor
15
+ from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel, XLMRobertaConfig
16
+
17
+
18
+ class BGEM3InferenceModel(PreTrainedModel):
19
+ config_class = XLMRobertaConfig
20
+ base_model_prefix = "BGEM3InferenceModel"
21
+ model_tags = ["BAAI/bge-m3"]
22
+
23
+ def __init__(self, model_name: str = "BAAI/bge-m3"):
24
+ super().__init__(PretrainedConfig())
25
+
26
+ model_name = snapshot_download(repo_id=model_name)
27
+
28
+ self.config = AutoConfig.from_pretrained(model_name)
29
+ self.model = AutoModel.from_pretrained(model_name)
30
+
31
+ self.sparse_linear = torch.nn.Linear(
32
+ in_features=self.model.config.hidden_size,
33
+ out_features=1,
34
+ )
35
+ sparse_state_dict = torch.load(os.path.join(model_name, "sparse_linear.pt"), map_location="cpu")
36
+ self.sparse_linear.load_state_dict(sparse_state_dict)
37
+
38
+ self.colbert_linear = torch.nn.Linear(
39
+ in_features=self.model.config.hidden_size,
40
+ out_features=self.model.config.hidden_size,
41
+ )
42
+ colbert_state_dict = torch.load(os.path.join(model_name, "colbert_linear.pt"), map_location="cpu")
43
+ self.colbert_linear.load_state_dict(colbert_state_dict)
44
+
45
+ def dense_embedding(self, last_hidden_state: Tensor) -> Tensor:
46
+ return last_hidden_state[:, 0]
47
+
48
+ def sparse_embedding(self, last_hidden_state: Tensor) -> Tensor:
49
+ with torch.no_grad():
50
+ return torch.relu(self.sparse_linear(last_hidden_state))
51
+
52
+ def colbert_embedding(self, last_hidden_state: Tensor, attention_mask: Tensor) -> Tensor:
53
+ with torch.no_grad():
54
+ colbert_vecs = self.colbert_linear(last_hidden_state[:, 1:])
55
+ return colbert_vecs * attention_mask[:, 1:][:, :, None].float()
56
+
57
+ def forward(self, input_ids: Tensor, attention_mask: Tensor) -> Dict[str, Tensor]:
58
+ with torch.no_grad():
59
+ last_hidden_state = self.model(
60
+ input_ids=input_ids, attention_mask=attention_mask, return_dict=True
61
+ ).last_hidden_state
62
+
63
+ output = {}
64
+ dense_vecs = self.dense_embedding(last_hidden_state)
65
+ output["dense_vecs"] = torch.nn.functional.normalize(dense_vecs, dim=-1)
66
+
67
+ sparse_vecs = self.sparse_embedding(last_hidden_state)
68
+ output["sparse_vecs"] = sparse_vecs
69
+
70
+ colbert_vecs = self.colbert_embedding(last_hidden_state, attention_mask)
71
+ output["colbert_vecs"] = torch.nn.functional.normalize(colbert_vecs, dim=-1)
72
+
73
+ return output
74
+
75
+
76
+ class BGEM3OnnxConfig(XLMRobertaOnnxConfig):
77
+ @property
78
+ def outputs(self) -> Dict[str, Dict[int, str]]:
79
+ return OrderedDict(
80
+ {
81
+ "dense_vecs": {0: "batch_size", 1: "embedding"},
82
+ "sparse_vecs": {0: "batch_size", 1: "token", 2: "weight"},
83
+ "colbert_vecs": {0: "batch_size", 1: "token", 2: "embedding"},
84
+ }
85
+ )
86
+
87
+
88
+ def main(output: str, device: str = "cuda", optimize: str = "O4"):
89
+ # 加载模型
90
+ model = BGEM3InferenceModel()
91
+ model.save_pretrained(output)
92
+
93
+ # 配置
94
+ bgem3_onnx_config = BGEM3OnnxConfig(model.config)
95
+
96
+ # 导出
97
+ export(
98
+ model,
99
+ output=Path(output) / "model.onnx",
100
+ config=bgem3_onnx_config,
101
+ opset=bgem3_onnx_config.DEFAULT_ONNX_OPSET,
102
+ device=device,
103
+ )
104
+
105
+ optimizer = ORTOptimizer.from_pretrained(output, file_names=["model.onnx"])
106
+ optimization_config = AutoOptimizationConfig.with_optimization_level(optimization_level=optimize)
107
+ optimization_config.disable_shape_inference = True
108
+ if optimize == "O4":
109
+ optimization_config.optimize_for_gpu = True
110
+ optimization_config.fp16 = True
111
+ optimization_config.optimization_level = 99
112
+ optimizer.optimize(save_dir=output, optimization_config=optimization_config, file_suffix="")
113
+
114
+ ORTModelForCustomTasks.from_pretrained(
115
+ output,
116
+ provider="CUDAExecutionProvider" if device == "cuda" else "CPUExecutionProvider",
117
+ )
118
+
119
+
120
+ if __name__ == "__main__":
121
+ import argparse
122
+
123
+ parser = argparse.ArgumentParser()
124
+ parser.add_argument("--output", type=str)
125
+ parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
126
+ parser.add_argument("--optimize", type=str, choices=["O1", "O2", "O3", "O4"], default="O4")
127
+ parser.add_argument("--push_to_hub", action="store_true", default=False)
128
+ parser.add_argument("--push_to_hub_repo_id", type=str, default="JeremyHibiki/bge-m3-onnx")
129
+ args = parser.parse_args()
130
+ main(args.output, args.device, args.optimize)