Upload DogeForCausalLM
Browse files- config.json +1 -1
- configuration_doge.py +14 -0
- generation_config.json +1 -1
- modeling_doge.py +255 -257
config.json
CHANGED
@@ -41,7 +41,7 @@
|
|
41 |
},
|
42 |
"rope_theta": 10000.0,
|
43 |
"torch_dtype": "float32",
|
44 |
-
"transformers_version": "4.
|
45 |
"use_cache": true,
|
46 |
"vocab_size": 32768
|
47 |
}
|
|
|
41 |
},
|
42 |
"rope_theta": 10000.0,
|
43 |
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.48.1",
|
45 |
"use_cache": true,
|
46 |
"vocab_size": 32768
|
47 |
}
|
configuration_doge.py
CHANGED
@@ -127,6 +127,17 @@ class DogeConfig(PretrainedConfig):
|
|
127 |
|
128 |
model_type = "doge"
|
129 |
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def __init__(
|
132 |
self,
|
@@ -210,3 +221,6 @@ class DogeConfig(PretrainedConfig):
|
|
210 |
tie_word_embeddings=tie_word_embeddings,
|
211 |
**kwargs,
|
212 |
)
|
|
|
|
|
|
|
|
127 |
|
128 |
model_type = "doge"
|
129 |
keys_to_ignore_at_inference = ["past_key_values"]
|
130 |
+
# Default tensor parallel plan for base model `DogeModel`
|
131 |
+
base_model_tp_plan = {
|
132 |
+
"layers.*.self_attn.q_proj": "colwise",
|
133 |
+
"layers.*.self_attn.k_proj": "colwise",
|
134 |
+
"layers.*.self_attn.v_proj": "colwise",
|
135 |
+
"layers.*.self_attn.dt_proj": "colwise",
|
136 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
137 |
+
"layers.*.mlp.gate_proj": "colwise",
|
138 |
+
"layers.*.mlp.up_proj": "colwise",
|
139 |
+
"layers.*.mlp.down_proj": "rowwise",
|
140 |
+
}
|
141 |
|
142 |
def __init__(
|
143 |
self,
|
|
|
221 |
tie_word_embeddings=tie_word_embeddings,
|
222 |
**kwargs,
|
223 |
)
|
224 |
+
|
225 |
+
|
226 |
+
__all__ = ["DogeConfig"]
|
generation_config.json
CHANGED
@@ -3,5 +3,5 @@
|
|
3 |
"bos_token_id": 0,
|
4 |
"eos_token_id": 1,
|
5 |
"pad_token_id": 2,
|
6 |
-
"transformers_version": "4.
|
7 |
}
|
|
|
3 |
"bos_token_id": 0,
|
4 |
"eos_token_id": 1,
|
5 |
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.48.1"
|
7 |
}
|
modeling_doge.py
CHANGED
@@ -19,7 +19,7 @@
|
|
19 |
"""PyTorch Doge model."""
|
20 |
|
21 |
import math
|
22 |
-
from typing import List, Optional, Tuple, Union
|
23 |
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
@@ -36,7 +36,9 @@ from transformers.modeling_outputs import (
|
|
36 |
)
|
37 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
38 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
39 |
from transformers.utils import (
|
|
|
40 |
add_start_docstrings,
|
41 |
add_start_docstrings_to_model_forward,
|
42 |
is_torch_greater_or_equal,
|
@@ -205,51 +207,66 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
205 |
|
206 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
207 |
super().__init__()
|
208 |
-
|
209 |
self.config = config
|
210 |
self.layer_idx = layer_idx
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
"Please make sure to provide a `layer_idx` when creating this class."
|
215 |
-
)
|
216 |
-
|
217 |
-
self.hidden_dim = config.hidden_size
|
218 |
-
self.num_heads = config.num_attention_heads
|
219 |
-
self.head_dim = self.hidden_dim // self.num_heads
|
220 |
-
self.num_key_value_heads = config.num_key_value_heads
|
221 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
222 |
self.attention_dropout = config.attention_dropout
|
223 |
self.dynamic_mask_ratio = config.dynamic_mask_ratio
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
# Q K V O projections
|
226 |
-
self.q_proj = nn.Linear(
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# dynamic mask for the QK^T attention score matrix
|
230 |
-
self.A = nn.Parameter(
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
def forward(
|
235 |
self,
|
236 |
hidden_states: torch.Tensor,
|
|
|
237 |
attention_mask: Optional[torch.Tensor] = None,
|
238 |
-
position_ids: Optional[torch.LongTensor] = None,
|
239 |
past_key_value: Optional[Cache] = None,
|
240 |
cache_position: Optional[torch.LongTensor] = None,
|
241 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
242 |
**kwargs,
|
243 |
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
244 |
-
|
|
|
245 |
|
246 |
-
query_states = self.q_proj(hidden_states)
|
247 |
-
key_states = self.k_proj(hidden_states)
|
248 |
-
value_states = self.v_proj(hidden_states)
|
249 |
-
|
250 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
251 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
252 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
253 |
|
254 |
cos, sin = position_embeddings
|
255 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
@@ -260,37 +277,32 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
260 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
261 |
|
262 |
# calculate dynamic mask from value_states
|
263 |
-
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(
|
264 |
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
265 |
-
|
266 |
-
# repeat key and value states
|
267 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
268 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
269 |
-
|
270 |
-
# compute attention scores matrix
|
271 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / math.sqrt(self.head_dim)
|
272 |
-
|
273 |
-
# add mask to attention scores
|
274 |
attn_mask = self.prepare_dynamic_mask(
|
275 |
hidden_states=hidden_states,
|
276 |
dynamic_mask=dynamic_mask,
|
277 |
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
278 |
attention_mask=attention_mask,
|
279 |
)
|
280 |
-
attn_weights = attn_weights + attn_mask
|
281 |
-
|
282 |
-
# upcast attention scores to fp32
|
283 |
-
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
284 |
-
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
285 |
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
attn_output = attn_output.
|
290 |
-
attn_output = attn_output.reshape(bsz, q_len, -1)
|
291 |
attn_output = self.o_proj(attn_output)
|
292 |
-
|
293 |
-
return attn_output, past_key_value
|
294 |
|
295 |
def prepare_dynamic_mask(
|
296 |
self,
|
@@ -318,136 +330,99 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
318 |
if attention_mask is not None:
|
319 |
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : hidden_states.shape[-2]] == min_type, min_type)
|
320 |
return attn_mask
|
321 |
-
|
322 |
-
|
323 |
-
class DogeSdpaDynamicMaskAttention(DogeDynamicMaskAttention):
|
324 |
-
|
325 |
-
def forward(
|
326 |
self,
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
**kwargs,
|
334 |
-
) ->
|
335 |
-
|
336 |
-
|
337 |
-
query_states = self.q_proj(hidden_states)
|
338 |
-
key_states = self.k_proj(hidden_states)
|
339 |
-
value_states = self.v_proj(hidden_states)
|
340 |
-
|
341 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
342 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
343 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
344 |
-
|
345 |
-
cos, sin = position_embeddings
|
346 |
-
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
352 |
|
353 |
-
#
|
354 |
-
|
355 |
-
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
367 |
|
368 |
# NOTE: As of pytorch 2.5.1, cuDNN's SDPA backward pass is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
|
369 |
torch.backends.cuda.enable_cudnn_sdp(False)
|
370 |
attn_output = F.scaled_dot_product_attention(
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
attn_mask=
|
375 |
-
dropout_p=
|
|
|
376 |
enable_gqa=True,
|
377 |
)
|
378 |
-
|
379 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
return attn_output, past_key_value
|
384 |
-
|
385 |
-
|
386 |
-
class DogeFlexDynamicMaskAttention(DogeDynamicMaskAttention):
|
387 |
-
|
388 |
-
def forward(
|
389 |
self,
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
**kwargs,
|
397 |
-
) ->
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
key_states = self.k_proj(hidden_states)
|
402 |
-
value_states = self.v_proj(hidden_states)
|
403 |
-
|
404 |
-
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
405 |
-
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
406 |
-
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
407 |
-
|
408 |
-
cos, sin = position_embeddings
|
409 |
-
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
410 |
-
|
411 |
-
if past_key_value is not None:
|
412 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
413 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
414 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
415 |
-
|
416 |
-
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
|
417 |
-
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
418 |
|
419 |
-
attn_mask = self.prepare_dynamic_mask(
|
420 |
-
hidden_states=hidden_states,
|
421 |
-
dynamic_mask=dynamic_mask,
|
422 |
-
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
423 |
-
attention_mask=attention_mask,
|
424 |
-
)
|
425 |
# TODO: flex_attention: Captured buffers that require grad are not yet supported.
|
426 |
# NOTE: So we only use flex_attention in inference mode.
|
427 |
-
def
|
428 |
-
score = score +
|
429 |
return score
|
430 |
-
|
431 |
attn_output = flex_attention(
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
score_mod=
|
|
|
436 |
enable_gqa=True,
|
437 |
)
|
438 |
-
|
439 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
440 |
-
|
441 |
-
attn_output = self.o_proj(attn_output)
|
442 |
-
|
443 |
-
return attn_output, past_key_value
|
444 |
-
|
445 |
-
|
446 |
-
DOGE_ATTENTION_CLASSES = {
|
447 |
-
"flex_attention": DogeFlexDynamicMaskAttention,
|
448 |
-
"eager": DogeDynamicMaskAttention,
|
449 |
-
"sdpa": DogeSdpaDynamicMaskAttention,
|
450 |
-
}
|
451 |
|
452 |
|
453 |
class DogeMLP(nn.Module):
|
@@ -535,7 +510,7 @@ class DogeDecoderLayer(nn.Module):
|
|
535 |
self.hidden_dropout = config.hidden_dropout
|
536 |
|
537 |
self.pre_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
538 |
-
self.self_attn =
|
539 |
self.pre_residual = Residual(config.hidden_size)
|
540 |
|
541 |
self.post_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -551,32 +526,14 @@ class DogeDecoderLayer(nn.Module):
|
|
551 |
output_attentions: Optional[bool] = False,
|
552 |
use_cache: Optional[bool] = False,
|
553 |
cache_position: Optional[torch.LongTensor] = None,
|
554 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
555 |
**kwargs,
|
556 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
557 |
-
"""
|
558 |
-
Args:
|
559 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
560 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
561 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used.
|
562 |
-
output_attentions (`bool`, *optional*):
|
563 |
-
Whether or not to return the attentions tensors of all attention layers.
|
564 |
-
See `attentions` under returned tensors for more detail.
|
565 |
-
use_cache (`bool`, *optional*):
|
566 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).
|
567 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
568 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
569 |
-
Indices depicting the position of the input sequence tokens in the sequence
|
570 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
571 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head.
|
572 |
-
kwargs (`dict`, *optional*):
|
573 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model
|
574 |
-
"""
|
575 |
|
576 |
# sequence transformation
|
577 |
residual = hidden_states
|
578 |
hidden_states = self.pre_layernorm(hidden_states)
|
579 |
-
hidden_states
|
580 |
hidden_states=hidden_states,
|
581 |
attention_mask=attention_mask,
|
582 |
position_ids=position_ids,
|
@@ -597,25 +554,39 @@ class DogeDecoderLayer(nn.Module):
|
|
597 |
hidden_states = self.post_residual(residual, hidden_states)
|
598 |
|
599 |
outputs = (hidden_states,)
|
600 |
-
|
601 |
if output_attentions:
|
602 |
outputs += (self_attn_weights,)
|
603 |
|
604 |
-
if use_cache:
|
605 |
-
outputs += (present_key_value,)
|
606 |
-
|
607 |
return outputs
|
608 |
|
609 |
|
610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
611 |
class DogePreTrainedModel(PreTrainedModel):
|
612 |
config_class = DogeConfig
|
613 |
base_model_prefix = "model"
|
614 |
supports_gradient_checkpointing = True
|
615 |
_no_split_modules = ["DogeDecoderLayer"]
|
616 |
_skip_keys_device_placement = ["past_key_values"]
|
617 |
-
_supports_flex_attn = True
|
618 |
_supports_sdpa = True
|
|
|
619 |
_supports_cache_class = True
|
620 |
_supports_quantized_cache = True
|
621 |
_supports_static_cache = True
|
@@ -635,10 +606,11 @@ class DogePreTrainedModel(PreTrainedModel):
|
|
635 |
DOGE_INPUTS_DOCSTRING = r"""
|
636 |
Args:
|
637 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
638 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
|
639 |
|
640 |
-
Indices can be obtained using [`AutoTokenizer`].
|
641 |
-
|
642 |
|
643 |
[What are input IDs?](../glossary#input-ids)
|
644 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
@@ -649,53 +621,75 @@ DOGE_INPUTS_DOCSTRING = r"""
|
|
649 |
|
650 |
[What are attention masks?](../glossary#attention-mask)
|
651 |
|
652 |
-
Indices can be obtained using [`AutoTokenizer`].
|
653 |
-
|
654 |
|
655 |
-
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
|
656 |
|
657 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
658 |
-
See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
|
659 |
|
660 |
- 1 indicates the head is **not masked**,
|
661 |
- 0 indicates the head is **masked**.
|
662 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
663 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
|
664 |
|
665 |
[What are position IDs?](../glossary#position-ids)
|
666 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
667 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
668 |
-
|
|
|
669 |
|
670 |
Two formats are allowed:
|
671 |
-
- a [`~cache_utils.Cache`] instance, see our
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
|
|
|
|
|
|
|
|
|
|
678 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
679 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
680 |
-
|
|
|
681 |
use_cache (`bool`, *optional*):
|
682 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
|
683 |
output_attentions (`bool`, *optional*):
|
684 |
-
Whether or not to return the attentions tensors of all attention layers.
|
685 |
-
|
686 |
output_hidden_states (`bool`, *optional*):
|
687 |
-
Whether or not to return the hidden states of all layers.
|
688 |
-
|
689 |
return_dict (`bool`, *optional*):
|
690 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
691 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
692 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
693 |
-
It is used to update the cache in the correct position and to infer
|
|
|
694 |
"""
|
695 |
|
696 |
|
697 |
-
@add_start_docstrings(
|
|
|
|
|
|
|
698 |
class DogeModel(DogePreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
def __init__(self, config: DogeConfig):
|
700 |
super().__init__(config)
|
701 |
self.config = config
|
@@ -732,6 +726,7 @@ class DogeModel(DogePreTrainedModel):
|
|
732 |
output_hidden_states: Optional[bool] = None,
|
733 |
return_dict: Optional[bool] = None,
|
734 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
735 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
736 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
737 |
output_hidden_states = (
|
@@ -752,33 +747,22 @@ class DogeModel(DogePreTrainedModel):
|
|
752 |
if inputs_embeds is None:
|
753 |
inputs_embeds = self.word_embed(input_ids)
|
754 |
|
755 |
-
|
756 |
-
|
757 |
-
if use_cache and not isinstance(past_key_values, Cache):
|
758 |
-
return_legacy_cache = True
|
759 |
-
if past_key_values is None:
|
760 |
-
past_key_values = DynamicCache()
|
761 |
-
else:
|
762 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
763 |
-
logger.warning_once(
|
764 |
-
"We detected that you are passing `past_key_values` as a tuple of tuples."
|
765 |
-
"This is deprecated and will be removed in v4.47."
|
766 |
-
"Please convert your cache or use an appropriate `Cache` class (https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
767 |
-
)
|
768 |
|
769 |
if cache_position is None:
|
770 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
771 |
cache_position = torch.arange(
|
772 |
-
past_seen_tokens,
|
773 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
774 |
-
device=inputs_embeds.device,
|
775 |
)
|
|
|
776 |
if position_ids is None:
|
777 |
position_ids = cache_position.unsqueeze(0)
|
778 |
|
779 |
causal_mask = self._update_causal_mask(
|
780 |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
781 |
)
|
|
|
782 |
hidden_states = inputs_embeds
|
783 |
|
784 |
# create position embeddings to be shared across the decoder layers
|
@@ -787,7 +771,6 @@ class DogeModel(DogePreTrainedModel):
|
|
787 |
# decoder layers
|
788 |
all_hidden_states = () if output_hidden_states else None
|
789 |
all_self_attns = () if output_attentions else None
|
790 |
-
next_decoder_cache = None
|
791 |
|
792 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
793 |
if output_hidden_states:
|
@@ -815,13 +798,11 @@ class DogeModel(DogePreTrainedModel):
|
|
815 |
use_cache=use_cache,
|
816 |
cache_position=cache_position,
|
817 |
position_embeddings=position_embeddings,
|
|
|
818 |
)
|
819 |
|
820 |
hidden_states = layer_outputs[0]
|
821 |
|
822 |
-
if use_cache:
|
823 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
824 |
-
|
825 |
if output_attentions:
|
826 |
all_self_attns += (layer_outputs[1],)
|
827 |
|
@@ -831,27 +812,21 @@ class DogeModel(DogePreTrainedModel):
|
|
831 |
if output_hidden_states:
|
832 |
all_hidden_states += (hidden_states,)
|
833 |
|
834 |
-
|
835 |
-
if return_legacy_cache:
|
836 |
-
next_cache = next_cache.to_legacy_cache()
|
837 |
-
|
838 |
-
if not return_dict:
|
839 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
840 |
-
|
841 |
-
return BaseModelOutputWithPast(
|
842 |
last_hidden_state=hidden_states,
|
843 |
-
past_key_values=
|
844 |
hidden_states=all_hidden_states,
|
845 |
attentions=all_self_attns,
|
846 |
)
|
|
|
847 |
|
848 |
def _update_causal_mask(
|
849 |
self,
|
850 |
-
attention_mask: torch.Tensor
|
851 |
-
input_tensor: torch.Tensor
|
852 |
-
cache_position: torch.Tensor
|
853 |
-
past_key_values: Cache
|
854 |
-
output_attentions: bool
|
855 |
):
|
856 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
857 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
@@ -892,15 +867,18 @@ class DogeModel(DogePreTrainedModel):
|
|
892 |
**kwargs,
|
893 |
):
|
894 |
"""
|
895 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
|
896 |
|
897 |
Args:
|
898 |
attention_mask (`torch.Tensor`):
|
899 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
|
900 |
sequence_length (`int`):
|
901 |
The sequence length being processed.
|
902 |
target_length (`int`):
|
903 |
-
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
|
904 |
dtype (`torch.dtype`):
|
905 |
The dtype to use for the 4D attention mask.
|
906 |
device (`torch.device`):
|
@@ -935,8 +913,12 @@ class DogeModel(DogePreTrainedModel):
|
|
935 |
return causal_mask
|
936 |
|
937 |
|
|
|
|
|
|
|
938 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
939 |
_tied_weights_keys = ["lm_head.weight"]
|
|
|
940 |
|
941 |
def __init__(self, config: DogeConfig):
|
942 |
super().__init__(config)
|
@@ -982,22 +964,38 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
982 |
return_dict: Optional[bool] = None,
|
983 |
cache_position: Optional[torch.LongTensor] = None,
|
984 |
num_logits_to_keep: int = 0,
|
985 |
-
**kwargs,
|
986 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
987 |
r"""
|
988 |
Args:
|
989 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
990 |
-
Labels for computing the masked language modeling loss.
|
991 |
-
|
992 |
-
|
993 |
|
994 |
num_logits_to_keep (`int`, *optional*):
|
995 |
-
Calculate logits for the last `num_logits_to_keep` tokens.
|
996 |
-
|
997 |
-
|
998 |
|
999 |
Returns:
|
1000 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1001 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1002 |
output_hidden_states = (
|
1003 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
19 |
"""PyTorch Doge model."""
|
20 |
|
21 |
import math
|
22 |
+
from typing import Callable, List, Optional, Tuple, Union
|
23 |
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
|
|
36 |
)
|
37 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
38 |
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.processing_utils import Unpack
|
40 |
from transformers.utils import (
|
41 |
+
LossKwargs,
|
42 |
add_start_docstrings,
|
43 |
add_start_docstrings_to_model_forward,
|
44 |
is_torch_greater_or_equal,
|
|
|
207 |
|
208 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
209 |
super().__init__()
|
|
|
210 |
self.config = config
|
211 |
self.layer_idx = layer_idx
|
212 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
213 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
214 |
+
self.scaling = self.head_dim ** -0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
self.attention_dropout = config.attention_dropout
|
216 |
self.dynamic_mask_ratio = config.dynamic_mask_ratio
|
217 |
|
218 |
+
self.ALL_ATTENTION_FUNCTIONS = {
|
219 |
+
"eager": self.eager_attention_forward,
|
220 |
+
"sdpa": self.sdpa_attention_forward,
|
221 |
+
"flex_attention": self.flex_attention_forward,
|
222 |
+
}
|
223 |
+
|
224 |
# Q K V O projections
|
225 |
+
self.q_proj = nn.Linear(
|
226 |
+
config.hidden_size,
|
227 |
+
config.num_attention_heads * self.head_dim,
|
228 |
+
bias=config.hidden_bias
|
229 |
+
)
|
230 |
+
self.k_proj = nn.Linear(
|
231 |
+
config.hidden_size,
|
232 |
+
config.num_key_value_heads * self.head_dim,
|
233 |
+
bias=config.hidden_bias
|
234 |
+
)
|
235 |
+
self.v_proj = nn.Linear(
|
236 |
+
config.hidden_size,
|
237 |
+
config.num_key_value_heads * self.head_dim,
|
238 |
+
bias=config.hidden_bias
|
239 |
+
)
|
240 |
# dynamic mask for the QK^T attention score matrix
|
241 |
+
self.A = nn.Parameter(
|
242 |
+
torch.ones(config.num_attention_heads)
|
243 |
+
)
|
244 |
+
self.dt_proj = nn.Linear(
|
245 |
+
config.num_key_value_heads * self.head_dim,
|
246 |
+
config.num_attention_heads,
|
247 |
+
bias=config.hidden_bias
|
248 |
+
)
|
249 |
+
self.o_proj = nn.Linear(
|
250 |
+
config.num_attention_heads * self.head_dim,
|
251 |
+
config.hidden_size,
|
252 |
+
bias=config.hidden_bias
|
253 |
+
)
|
254 |
|
255 |
def forward(
|
256 |
self,
|
257 |
hidden_states: torch.Tensor,
|
258 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
259 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
260 |
past_key_value: Optional[Cache] = None,
|
261 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
262 |
**kwargs,
|
263 |
) -> Tuple[torch.Tensor, Optional[Cache]]:
|
264 |
+
input_shape = hidden_states.shape[:-1]
|
265 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
266 |
|
267 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
268 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
269 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
|
|
|
|
|
|
|
270 |
|
271 |
cos, sin = position_embeddings
|
272 |
query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
277 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
278 |
|
279 |
# calculate dynamic mask from value_states
|
280 |
+
dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1))
|
281 |
dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
attn_mask = self.prepare_dynamic_mask(
|
283 |
hidden_states=hidden_states,
|
284 |
dynamic_mask=dynamic_mask,
|
285 |
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
286 |
attention_mask=attention_mask,
|
287 |
)
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
attention_interface: Callable = self.eager_attention_forward
|
290 |
+
if self.config._attn_implementation != "eager":
|
291 |
+
attention_interface = self.ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
292 |
+
|
293 |
+
attn_output = attention_interface(
|
294 |
+
query_states,
|
295 |
+
key_states,
|
296 |
+
value_states,
|
297 |
+
attention_mask=attn_mask,
|
298 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
299 |
+
scaling=self.scaling,
|
300 |
+
**kwargs,
|
301 |
+
)
|
302 |
|
303 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
|
304 |
attn_output = self.o_proj(attn_output)
|
305 |
+
return attn_output
|
|
|
306 |
|
307 |
def prepare_dynamic_mask(
|
308 |
self,
|
|
|
330 |
if attention_mask is not None:
|
331 |
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : hidden_states.shape[-2]] == min_type, min_type)
|
332 |
return attn_mask
|
333 |
+
|
334 |
+
def eager_attention_forward(
|
|
|
|
|
|
|
335 |
self,
|
336 |
+
query: torch.Tensor,
|
337 |
+
key: torch.Tensor,
|
338 |
+
value: torch.Tensor,
|
339 |
+
attention_mask: Optional[torch.Tensor],
|
340 |
+
scaling: float,
|
341 |
+
dropout: float = 0.0,
|
342 |
**kwargs,
|
343 |
+
) -> torch.Tensor:
|
344 |
+
key_states = repeat_kv(key, self.num_key_value_groups)
|
345 |
+
value_states = repeat_kv(value, self.num_key_value_groups)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
+
# compute attention scores matrix
|
348 |
+
attn_weights = torch.matmul(query, key_states.transpose(-1, -2)) * scaling
|
349 |
+
if attention_mask is not None:
|
350 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
351 |
+
attn_weights = attn_weights + causal_mask
|
352 |
|
353 |
+
# upcast attention scores to fp32
|
354 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
355 |
+
attn_weights = F.dropout(attn_weights, p=dropout, training=self.training)
|
356 |
|
357 |
+
# apply attention scores to value states
|
358 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
359 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
360 |
+
return attn_output
|
361 |
+
|
362 |
+
def sdpa_attention_forward(
|
363 |
+
self,
|
364 |
+
query: torch.Tensor,
|
365 |
+
key: torch.Tensor,
|
366 |
+
value: torch.Tensor,
|
367 |
+
attention_mask: Optional[torch.Tensor],
|
368 |
+
scaling: float,
|
369 |
+
dropout: float = 0.0,
|
370 |
+
**kwargs,
|
371 |
+
) -> torch.Tensor:
|
372 |
+
causal_mask = attention_mask
|
373 |
+
if attention_mask is not None:
|
374 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
375 |
|
376 |
+
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
|
377 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
378 |
+
query = query.contiguous()
|
379 |
+
key = key.contiguous()
|
380 |
+
value = value.contiguous()
|
381 |
|
382 |
# NOTE: As of pytorch 2.5.1, cuDNN's SDPA backward pass is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
|
383 |
torch.backends.cuda.enable_cudnn_sdp(False)
|
384 |
attn_output = F.scaled_dot_product_attention(
|
385 |
+
query,
|
386 |
+
key,
|
387 |
+
value,
|
388 |
+
attn_mask=causal_mask,
|
389 |
+
dropout_p=dropout,
|
390 |
+
scale=scaling,
|
391 |
enable_gqa=True,
|
392 |
)
|
|
|
393 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
394 |
+
return attn_output
|
395 |
+
|
396 |
+
def flex_attention_forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
self,
|
398 |
+
query: torch.Tensor,
|
399 |
+
key: torch.Tensor,
|
400 |
+
value: torch.Tensor,
|
401 |
+
attention_mask: Optional[torch.Tensor],
|
402 |
+
scaling: float,
|
403 |
+
dropout: float = 0.0,
|
404 |
**kwargs,
|
405 |
+
) -> torch.Tensor:
|
406 |
+
causal_mask = attention_mask
|
407 |
+
if attention_mask is not None:
|
408 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
# TODO: flex_attention: Captured buffers that require grad are not yet supported.
|
411 |
# NOTE: So we only use flex_attention in inference mode.
|
412 |
+
def mask_mod(score, batch, head, q_idx, kv_idx):
|
413 |
+
score = score + causal_mask[batch][head][q_idx][kv_idx]
|
414 |
return score
|
415 |
+
|
416 |
attn_output = flex_attention(
|
417 |
+
query,
|
418 |
+
key,
|
419 |
+
value,
|
420 |
+
score_mod=mask_mod,
|
421 |
+
scale=scaling,
|
422 |
enable_gqa=True,
|
423 |
)
|
|
|
424 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
425 |
+
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
|
427 |
|
428 |
class DogeMLP(nn.Module):
|
|
|
510 |
self.hidden_dropout = config.hidden_dropout
|
511 |
|
512 |
self.pre_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
513 |
+
self.self_attn = DogeDynamicMaskAttention(config=config, layer_idx=layer_idx)
|
514 |
self.pre_residual = Residual(config.hidden_size)
|
515 |
|
516 |
self.post_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
526 |
output_attentions: Optional[bool] = False,
|
527 |
use_cache: Optional[bool] = False,
|
528 |
cache_position: Optional[torch.LongTensor] = None,
|
529 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
530 |
**kwargs,
|
531 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
|
533 |
# sequence transformation
|
534 |
residual = hidden_states
|
535 |
hidden_states = self.pre_layernorm(hidden_states)
|
536 |
+
hidden_states = self.self_attn(
|
537 |
hidden_states=hidden_states,
|
538 |
attention_mask=attention_mask,
|
539 |
position_ids=position_ids,
|
|
|
554 |
hidden_states = self.post_residual(residual, hidden_states)
|
555 |
|
556 |
outputs = (hidden_states,)
|
|
|
557 |
if output_attentions:
|
558 |
outputs += (self_attn_weights,)
|
559 |
|
|
|
|
|
|
|
560 |
return outputs
|
561 |
|
562 |
|
563 |
+
DOGE_START_DOCSTRING = r"""
|
564 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
565 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
566 |
+
etc.)
|
567 |
+
|
568 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
569 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
570 |
+
and behavior.
|
571 |
+
|
572 |
+
Parameters:
|
573 |
+
config ([`DogeConfig`]):
|
574 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
575 |
+
load the weights associated with the model, only the configuration. Check out the
|
576 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
577 |
+
"""
|
578 |
+
@add_start_docstrings(
|
579 |
+
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
580 |
+
DOGE_START_DOCSTRING,
|
581 |
+
)
|
582 |
class DogePreTrainedModel(PreTrainedModel):
|
583 |
config_class = DogeConfig
|
584 |
base_model_prefix = "model"
|
585 |
supports_gradient_checkpointing = True
|
586 |
_no_split_modules = ["DogeDecoderLayer"]
|
587 |
_skip_keys_device_placement = ["past_key_values"]
|
|
|
588 |
_supports_sdpa = True
|
589 |
+
_supports_flex_attn = True
|
590 |
_supports_cache_class = True
|
591 |
_supports_quantized_cache = True
|
592 |
_supports_static_cache = True
|
|
|
606 |
DOGE_INPUTS_DOCSTRING = r"""
|
607 |
Args:
|
608 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
609 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
610 |
+
it.
|
611 |
|
612 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
613 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
614 |
|
615 |
[What are input IDs?](../glossary#input-ids)
|
616 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
621 |
|
622 |
[What are attention masks?](../glossary#attention-mask)
|
623 |
|
624 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
625 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
626 |
|
627 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
628 |
+
`past_key_values`).
|
629 |
|
630 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
631 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
632 |
+
information on the default strategy.
|
633 |
|
634 |
- 1 indicates the head is **not masked**,
|
635 |
- 0 indicates the head is **masked**.
|
636 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
637 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
638 |
+
config.n_positions - 1]`.
|
639 |
|
640 |
[What are position IDs?](../glossary#position-ids)
|
641 |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
642 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
643 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
644 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
645 |
|
646 |
Two formats are allowed:
|
647 |
+
- a [`~cache_utils.Cache`] instance, see our
|
648 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
649 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
650 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
651 |
+
cache format.
|
652 |
+
|
653 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
654 |
+
legacy cache format will be returned.
|
655 |
+
|
656 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
657 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
658 |
+
of shape `(batch_size, sequence_length)`.
|
659 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
660 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
661 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
662 |
+
model's internal embedding lookup matrix.
|
663 |
use_cache (`bool`, *optional*):
|
664 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
665 |
+
`past_key_values`).
|
666 |
output_attentions (`bool`, *optional*):
|
667 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
668 |
+
tensors for more detail.
|
669 |
output_hidden_states (`bool`, *optional*):
|
670 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
671 |
+
more detail.
|
672 |
return_dict (`bool`, *optional*):
|
673 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
674 |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
675 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
676 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
677 |
+
the complete sequence length.
|
678 |
"""
|
679 |
|
680 |
|
681 |
+
@add_start_docstrings(
|
682 |
+
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
683 |
+
DOGE_START_DOCSTRING,
|
684 |
+
)
|
685 |
class DogeModel(DogePreTrainedModel):
|
686 |
+
"""
|
687 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`]
|
688 |
+
|
689 |
+
Args:
|
690 |
+
config: DogeConfig
|
691 |
+
"""
|
692 |
+
|
693 |
def __init__(self, config: DogeConfig):
|
694 |
super().__init__(config)
|
695 |
self.config = config
|
|
|
726 |
output_hidden_states: Optional[bool] = None,
|
727 |
return_dict: Optional[bool] = None,
|
728 |
cache_position: Optional[torch.LongTensor] = None,
|
729 |
+
**kwargs,
|
730 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
731 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
732 |
output_hidden_states = (
|
|
|
747 |
if inputs_embeds is None:
|
748 |
inputs_embeds = self.word_embed(input_ids)
|
749 |
|
750 |
+
if use_cache and past_key_values is None:
|
751 |
+
past_key_values = DynamicCache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
|
753 |
if cache_position is None:
|
754 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
755 |
cache_position = torch.arange(
|
756 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
|
757 |
)
|
758 |
+
|
759 |
if position_ids is None:
|
760 |
position_ids = cache_position.unsqueeze(0)
|
761 |
|
762 |
causal_mask = self._update_causal_mask(
|
763 |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
764 |
)
|
765 |
+
|
766 |
hidden_states = inputs_embeds
|
767 |
|
768 |
# create position embeddings to be shared across the decoder layers
|
|
|
771 |
# decoder layers
|
772 |
all_hidden_states = () if output_hidden_states else None
|
773 |
all_self_attns = () if output_attentions else None
|
|
|
774 |
|
775 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
776 |
if output_hidden_states:
|
|
|
798 |
use_cache=use_cache,
|
799 |
cache_position=cache_position,
|
800 |
position_embeddings=position_embeddings,
|
801 |
+
**kwargs,
|
802 |
)
|
803 |
|
804 |
hidden_states = layer_outputs[0]
|
805 |
|
|
|
|
|
|
|
806 |
if output_attentions:
|
807 |
all_self_attns += (layer_outputs[1],)
|
808 |
|
|
|
812 |
if output_hidden_states:
|
813 |
all_hidden_states += (hidden_states,)
|
814 |
|
815 |
+
output = BaseModelOutputWithPast(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
816 |
last_hidden_state=hidden_states,
|
817 |
+
past_key_values=past_key_values if use_cache else None,
|
818 |
hidden_states=all_hidden_states,
|
819 |
attentions=all_self_attns,
|
820 |
)
|
821 |
+
return output if return_dict else output.to_tuple()
|
822 |
|
823 |
def _update_causal_mask(
|
824 |
self,
|
825 |
+
attention_mask: torch.Tensor,
|
826 |
+
input_tensor: torch.Tensor,
|
827 |
+
cache_position: torch.Tensor,
|
828 |
+
past_key_values: Cache,
|
829 |
+
output_attentions: bool,
|
830 |
):
|
831 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
832 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
867 |
**kwargs,
|
868 |
):
|
869 |
"""
|
870 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
871 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
872 |
|
873 |
Args:
|
874 |
attention_mask (`torch.Tensor`):
|
875 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
876 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
877 |
sequence_length (`int`):
|
878 |
The sequence length being processed.
|
879 |
target_length (`int`):
|
880 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
881 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
882 |
dtype (`torch.dtype`):
|
883 |
The dtype to use for the 4D attention mask.
|
884 |
device (`torch.device`):
|
|
|
913 |
return causal_mask
|
914 |
|
915 |
|
916 |
+
class KwargsForCausalLM(LossKwargs): ...
|
917 |
+
|
918 |
+
|
919 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
920 |
_tied_weights_keys = ["lm_head.weight"]
|
921 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
922 |
|
923 |
def __init__(self, config: DogeConfig):
|
924 |
super().__init__(config)
|
|
|
964 |
return_dict: Optional[bool] = None,
|
965 |
cache_position: Optional[torch.LongTensor] = None,
|
966 |
num_logits_to_keep: int = 0,
|
967 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
968 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
969 |
r"""
|
970 |
Args:
|
971 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
972 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
973 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
974 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
975 |
|
976 |
num_logits_to_keep (`int`, *optional*):
|
977 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
978 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
979 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
980 |
|
981 |
Returns:
|
982 |
+
|
983 |
+
Example:
|
984 |
+
|
985 |
+
```python
|
986 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
987 |
+
|
988 |
+
>>> model = AutoModelForCausalLM.from_pretrained("JingzeShi/Doge-20M-Instruct")
|
989 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("JingzeShi/Doge-20M-Instruct")
|
990 |
+
|
991 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
992 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
993 |
+
|
994 |
+
>>> # Generate
|
995 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
996 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
997 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
998 |
+
```"""
|
999 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1000 |
output_hidden_states = (
|
1001 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|